

Do No Harm: Mitigating Risk Factors for Non-Ventilator Pneumonia

Kathleen M. Vollman MSN, RN, CCNS, FCCM, FCNS, FAAN
Clinical Nurse Specialist / Educator / Consultant
ADVANCING NURSING
kvollman@comcast.net
Northville, Michigan
www.vollman.com

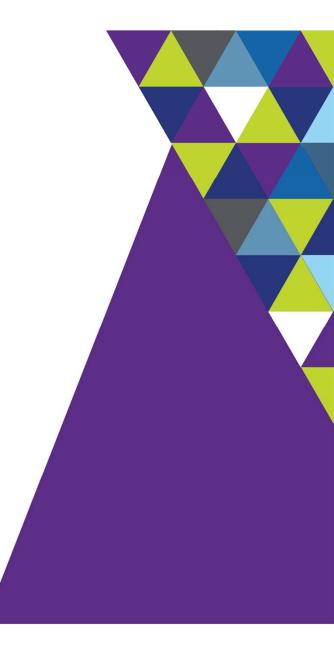
25942B

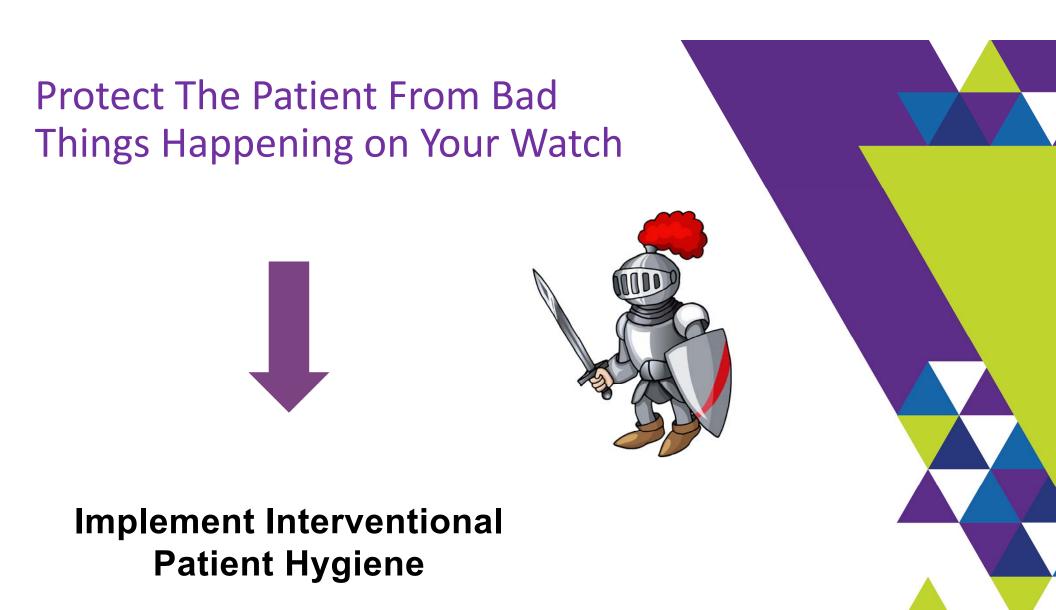
© ADVANCING NURSING LLC 2021

Disclosures

- △ Consultant-Michigan Hospital Association Keystone Center
- △ Subject matter expert on CAUTI, CLABSI, HAPI, Sepsis, Safety culture for HRET/AHA
- △ Consultant and speaker bureau
 - △ Stryker's Sage business
 - △ LaJolla Pharmaceutical
 - △ Potrero Medical
- ▲ Baxter Advisory Board

Session Objectives


- Create the link of patient advocacy to the basic nursing care
- △ Define key fundamental evidence-based nursing care practices that reduce non-vent HAP
- Discuss strategies to overcome barriers


Notes on Hospitals: 1859

"It may seem a strange principle to enunciate as the very first requirement in a Hospital that it should do the sick no harm."

- Florence Nightingale

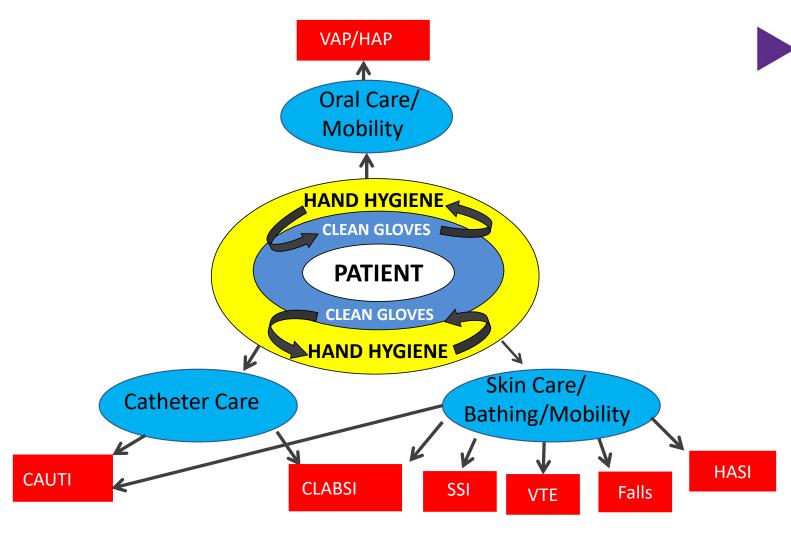
Advocacy = Safety

Interventional Patient Hygiene

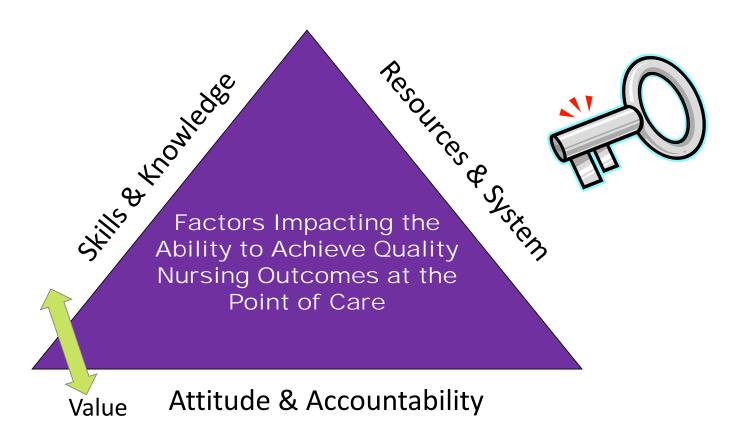
- A Hygiene...the science and practice of the establishment and maintenance of health
- △ Interventional Patient Hygiene....nursing action plan directly focused on fortifying the patient's host defense through proactive use of evidence-based hygiene care strategies

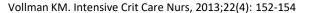
Hand Hygiene

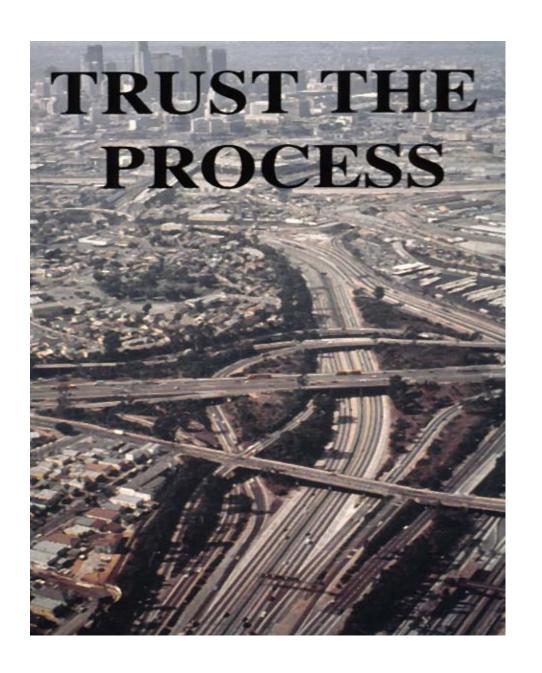
Comprehensive Oral Care Plan


Incontinence-Associated Dermatitis Prevention Program

Bathing & Assessment

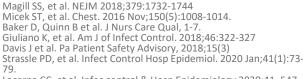

Pressure Injury Risk Reduction


Catheter Care


INTERVENTIONAL PATIENT HYGIENE(IPH)

Achieving the Use of the Evidence




Non-Vent Pneumonia: Addressing Risk Factors

Build the Will: NV-HAP Causes Harm

- A HAP 1st most common HAI in U.S.
- 1 in every 4 hospital infections are pneumonia
 - △ 60% non-ventilator
- △ Increased mortality →15.5%-30.9%
 - △ 8 ½ x more likely to die than equally sick patients who did not get non-vent HAP

Lacerna CC, et al. Infec control & Hosp Epidemiology 2020;41, 547-552

Build the Will: NV-HAP Causes Harm

- △ Increased morbidity → 50% are not discharged home
 - \triangle Extended LOS \rightarrow 7-9 days
 - \triangle Increased Cost \rightarrow \$36K to \$54K per case
 - △ 2x likely for readmission <30 day
 - △ 46% ↑ ICU utilization
 - △ Increase antibiotic utilization

Magill SS, et al. NEJM 2018;379:1732-1744
Micek ST, et al. Chest. 2016 Nov;150(5):1008-1014.
Baker D, Quinn B et al. J Nurs Care Qual, 1-7.
Giuliano K, et al. Am J of Infect Control. 2018;46:322-327
Davis J et al. Pa Patient Safety Advisory, 2018;15(3)
Strassle PD, et al. Infect Control Hosp Epidemiol. 2020 Jan;41(1):73-79.

Lacerna CC, et al. Infec control & Hosp Epidemiology 2020;41, 547-552

Relative Harm: Most Common HAIs

Туре	% Prevalence	% Mortality	Cost	
CAUTI	13%	1.5%	\$1,108	
CLABSI	CLABSI 5-10%		\$33,618	
SSI	22%	3%	\$19,305	
НАР	HAP 22%		\$40,000	

Hospital-Acquired Pneumonia:

Non-Ventilated versus Ventilated Patients in Pennsylvania

Purpose:

△ Compare VAP and NV-HAP incidence, outcomes

Methods:

- Pennsylvania Database queried
- △ All nosocomial pneumonia data sets (2009-2016)

Results:

Table 1. Penns	Table 1. Pennsylvania Nosocomial Pneumonia Incidence and Number of Patients with NV-HAP or VAP Who Died								
Year	Number of NV-HAP Patients	Number of NV-HAP Patients Who Died	Percentage of Patients with NV-HAP Who Died (Confidence Interval)	Number of VAP Patients	Number of VAP Patients Who Died	Percentage of Patients with VAP Who Died (Confidence Limit)			
2009	1,977	364	18.41 (16.52–20.3)	922	163	17.68 (14.96–20.39)			
2010	1,848	366	19.81 (17.78–21.83)	737	144	19.54 (16.35–22.73)			
2011	1,780	318	17.87 (15.9–19.83)	643	127	19.75 (16.32–23.19)			
2012	1,620	307	18.95 (16.83–21.07)	571	112	19.61 (15.98–23.25)			
2013	1,528	285	18.65 (16.49–20.82)	767	160	20.86 (17.63–24.09)			
2014	1,419	256	18.04 (15.83–20.25)	901	199	22.09 (19.02–25.16)			
2015	1,427	277	19.41 (17.13–21.7)	912	218	23.90 (20.73–27.08)			
2016	1,380	280	20.29 (17.91–22.67)	980	221	22.55 (19.58–25.52)			
Total	12,979	2453	18.89%	6433	1344	20.89%			

- Mortality
- Incidence
- ▲ Total deaths
- Total cost
- Wide-spread

NV-HAP SMCS Research Findings: 2010

Incidence:

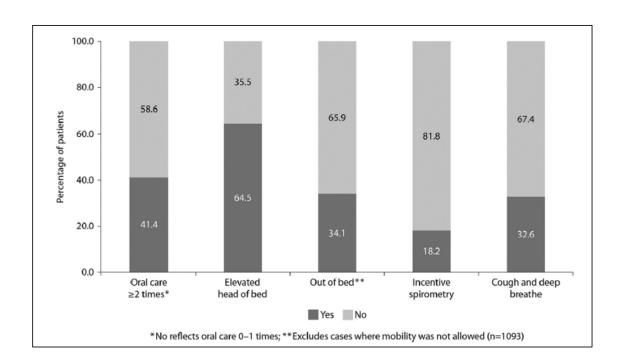
- ▲ 115 adults
- △ 62% non-ICU
- △ 50% surgical
- △ Average age 66
- Common comorbidities:
 - CAD, COPD, DM, GERD
- Common Risk Factors:
 - Dependent for ADLs (80%)
 - CNS depressant meds (79%)

24,482 patients and **94,247** pt days

Cost:

- \$4.6 million
- △ 23 deaths
- △ Mean Extended LOS 9 days
- △ 1,035 extra days

Quinn, B. et al. Journal of Nursing Scholarship, 2014. 46(1):11-19


HAPPI-2 Incidence of Non-Ventilator Hospital-Acquired Pneumonia

- ▲ Multicenter retrospective chart review
- △ Extracted NV-HAP cases per the 2014 ICD-9-CM codes for pneumonia not POA and the 2013 CDC case definition
- 21 hospitals completed data collection
- △ Measured nursing care missed 24hrs before diagnosis
- Non-vent HAP occurred on every unit

HAPPI-2 Incidence of Non-Ventilator Hospital-Acquired Pneumonia

Missed nursing care 24 hours prior to Non-Vent HAP dx.

HAPPI-2 Incidence of Non-Vent Hospital-Acquired Pneumonia

Results:

- 1,300 NV-HAP (0.12-2.28 per 1,000 pt days)
 - △ 15.8% mortality
 - \triangle 50% < 66 yrs old
 - △ 63% non-surgical
 - △ 70.8% outside the ICU
 - △ 27.3 % in ICU
 - △ 18.8% transferred to ICU
 - △ 37.3% LOS >20 days
 - \triangle 57.7% LOS > 15 days
 - △ 40.6% admitted from home were discharged back to home
 - △ 19.3% readmitted within 30 days
 - \triangle \$36.4 -\$52.56 million in extra costs

- Med-Surg (43.1%; n = 560)
- Telemetry (8.5%; n = 111)
- Progressive (7.2%; n = 93)
- Oncology (4.9%; n = 64)
- Orthopedic (2.8%; n = 37)
- Neurology (1.5%; n = 19)
- Obstetric (0.2%; n = 3)

Epidemiology of Non-Ventilator Hospital Acquired Pneumonia in US

- △ The 2012 US national inpatient sample dataset was used to compare an NV-HAP group to 4 additional group cohorts:
 - Pneumonia on admission
 - General hospital admissions
 - Matched on mortality & disease severity
 - Ventilator-associated pneumonia (VAP)
- Secondary outcome: compare HLOS, total hospital charges, and mortality between the NV-HAP group and the 4 l group cohorts

Giuliano K, et al. Am J of Infect Control. 2018;46:322-327

Epidemiology of Non-Ventilator Hospital Acquired Pneumonia in US

- △ Incidence of NV-HAP was 1.6%, (3.63 per 1,000 pt days)
- NV-HAP was associated with:
 - △ Increased total hospital charges
 - △ Longer hospital length of stay
 - △ Greater likelihood of death

Compared to all groups except patients with VAP

Is Pneumonia Part of the Sepsis Picture?

30-50% of sepsis cases may initiate with pneumonia

Site of infection	Frequency %		Mortality %	
	Male	Female	Male	Female
Respiratory	41.8	35.8	22.0	22.0
Bacteremia	21.0	20.0	33.5	34.9
Genitourinary	10.3	18.0	8.6	7.8
Abdominal	8.6	8.1	9.8	10.6
Device related	1.2	1.0	9.5	9.5
Wound/ soft tissue	9.0	7.5	9.4	11.7
Central nervous system	0.7	0.5	17.3	17.5
Endocarditis	0.9	0.5	23.8	28.1
Other/ unspecified	6.7	8.6	7.6	6.5

Risk of developing sepsis 28x greater with NVHAP than with pneumonia on admission

Where is the Highest Risk for NV-HAP?

NV-HAP per 1000 patient days

Slide courtesy of Barb Quinn

Addressing the risk-factors associated with NV-HAP through evidence based fundamental nursing care strategies

Single Ecosystem

- Entire respiratory tract is one ecosystem
 - △ Upper-nasal and oral cavities
 - △ Lower-alveoli
- △ Not sterile environment
- Oral flora changes in hospitalized patients
- Relationship between dental plaque and pulmonary lavage fluid

Nasal duct Vocal Oral **Apparatus** cavity Trachea Ribs Uppei Lobe Rib cage Middle Lobe Lowe Cardiac notch Diaphragm

Huffnagle GB, et al. Mucosal Immunol. 2017 Mar;10(2):299-306 Johanson WG, et al. N Engl J Med. 1969 Nov 20;281(21):1137-40 Heo SM, et al. Clin Infect Dis. 2008 Dec 15;47(12):1562-70.

Risk Factors for Pneumonia

Pathogens

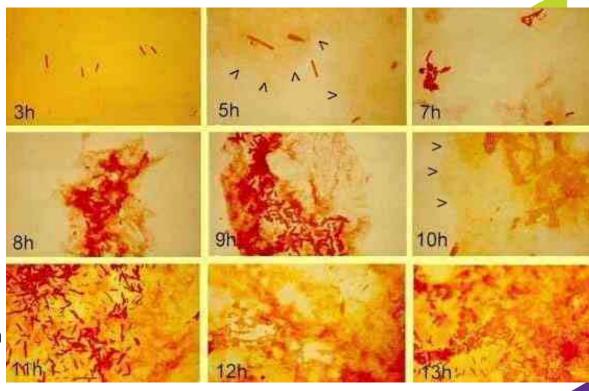
- Hospital environment
- Healthcare workers
- Disruption of normal oral flora

Aspiration

- Supine position
- CNS depressant medications
- Invasive tubes

Weak Host

- Surgery
- Immobility
- Co-morbid conditions



Oral cavity

- △ > 1 billion oral microbes
- △ 700-1000 species
- △ Replicate's 5 x in 24hr period

Disruption of Microbiome

- △ Plaque, gingivitis, tooth decay
- △ Reduced salivary flow/change in pH
- △ 24-48 hours for HAP pathogens in mouth
- If aspirated =100,000,000 bacteria/ml saliva into lungs

Oral Cavity & VAP

- ▲ 89 critically ill patients
- Examined microbial colonization of the oropharynx through out ICU stay
- △ Used pulse field gel electrophoresis to compare chromosomal DNA
- Results:
 - △ Diagnosed 31 VAPs
 - △ 28 of 31 VAPs the causative organism was identical via DNA analysis

- △ 49 elderly nursing home residents admitted to the hospital
- Examined baseline dental plaque scores & microorganism within dental plaque
- Used pulse field gel electrophoresis to compare chromosomal DNA
- Results
 - △ 14/49 adults developed pneumonia
 - △ 10 of 14 pneumonias, the causative organism was identical via DNA analysis

Role of Salivary Flow

- Provides mechanical removal of plaque and microorganisms
- Innate & specific immune components (IgA, cortisol, lactoferrin)
- A Patients receiving mechanical ventilation have dry mouth which in turn contributes to accumulation of plaque & reduced distribution of salivary immune factors

Risk Factors for Pneumonia

Pathogens

- Hospital environment
- Healthcare workers
- Disruption of normal oral flora

Aspiration

- Supine position
- CNS depressant medications
- Invasive tubes

Weak Host

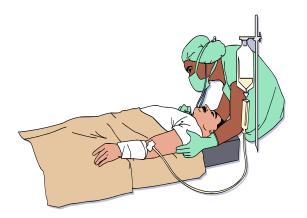
- Surgery
- Immobility
- Co-morbid conditions

Micro Aspiration during Sleep in Healthy Subjects

- Prospective duplicate full-night studies
- △ 10 normal male's 22-55 years of age
- Methods:
 - Radioactive 99 mTc tracer inserted into the nasopharynx
 - Lung scans following final awakening
 - No difference in sleep efficacy between 2 study nights

A Results:

50%


In the lung parenchyma

Body Position: Supine versus Semi-recumbent (30-45 degrees)

Methodology

- ▲ 19 mechanically ventilated patients
- 2 period crossover trial
- Study supine and semirecumbent positions over 2 days
- △ Labeled gastric contents (Tc 99m sulphur colloid)
- △ Measured q 30 min content of gastric secretions in endobronchial tree in each position
- Sampled ET secretions, gastric juice & pharyngeal contents for bacteria

Body Position: Supine versus Semi-recumbent

Results:

A Radioactive contents higher in endobronchial secretions in supine patients

Time dependent:

- Supine: 298cpm/30min vs. 2592cpm/300min
- HOB: 103cpm/30min vs.216cpm/300min

Same microbes cultured in all 3 areas

• HOB: 32%

• Supine: 68%

Risk Factors for Pneumonia

Pathogens

- Hospital environment
- Healthcare workers
- Disruption of normal oral flora

Aspiration

- Supine position
- CNS depressant medications
- Invasive tubes

Weak Host

- Surgery
- Immobility
- Co-morbid conditions

Weak Host: Who is at Highest Risk?

- ▲ Male
- Elderly
- Surgical
- **△** ICU
- Chronic disease
 - △ DM, CHF, CKD, COPD, alcoholism

- ▲ Immunocompromised
- △ More than 6 medications
- △ Low albumin
- △ On antibiotics
- △ Dependent for ADLs
- **&** Smokers

Slide courtesy of Barb Quinn

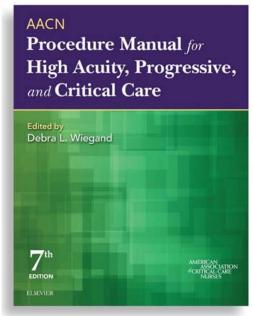
Stewardship of Stress Ulcer Prophylaxis (SUP)

- △ The most common complication of SUP is pneumonia
- ICU enteral fed patients
 - △ no benefit & may increase risk for pneumonia (Huang study)
 - △ Avoid unnecessary use
- Acute Stroke patients (Systematic Review & Meta-Analysis)
 - △ Acid suppressive medications are an important contributor to pneumonia development, especially PPIs
- May lead to loss of protective bacteriostatic effect of gastric acid
- A Higher risk of Clostridium difficile infection when combined with antibiotics

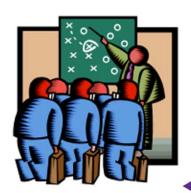
Systematic Review of Inpatient Mobilization

- △ Literature review of research studies that provides evidence to the consequences of mobilizing or not mobilizing hospitalized adult patients
- 36 studies were included
- Findings in four theme areas:
 - △ Physical outcomes include pain relief, reduced deep vein thrombosis, less fatigue, less delirium, less pneumonia, improved physical function (no relationship to falls)
 - \triangle Psychological outcomes include less anxiety, \downarrow depressive mood, \downarrow distress symptoms, \uparrow comfort and \uparrow satisfaction
 - △ Social outcomes include ↑quality of life and more independence
 - \triangle Organizational outcomes include \checkmark length of stay, \checkmark mortality and \checkmark cost

What about Incentive Spirometry?


- △ Commonly prescribed to improve lung function for patients with surgery, pneumonia, rib fractures, etc.
- △ No evidence that Incentive Spirometry is effective in the prevention of pulmonary complications in upper abdominal surgery or CABG (Cochrane 2012 & 2014)
- △ Postop IS did not demonstrate any effect for bariatric surgery patients on postop hypoxemia, SaO₂ level, or postop pulmonary complications (JAMA Surg 2017)

Procedure 4: Endotracheal Tube Care and Oral Care

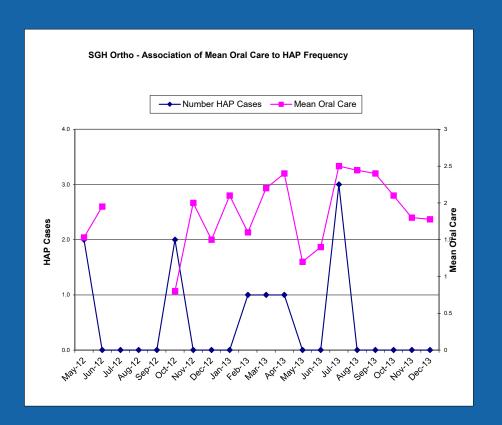

Authors:

Kathleen M Vollman Mary Lou Sole Barbara Quinn

SMCS HAP Prevention Plan

Phase 1: Oral Care

- △ Formation of new quality team: Hospital-Acquired Pneumonia Prevention Initiative (HAPPI)
- △ New oral care protocol to include non-ventilated patients
- △ New oral care products and equipment for all patients
- △ Staff education and in-services on products
- △ Ongoing monitoring and measurement
 - △ Monthly audits



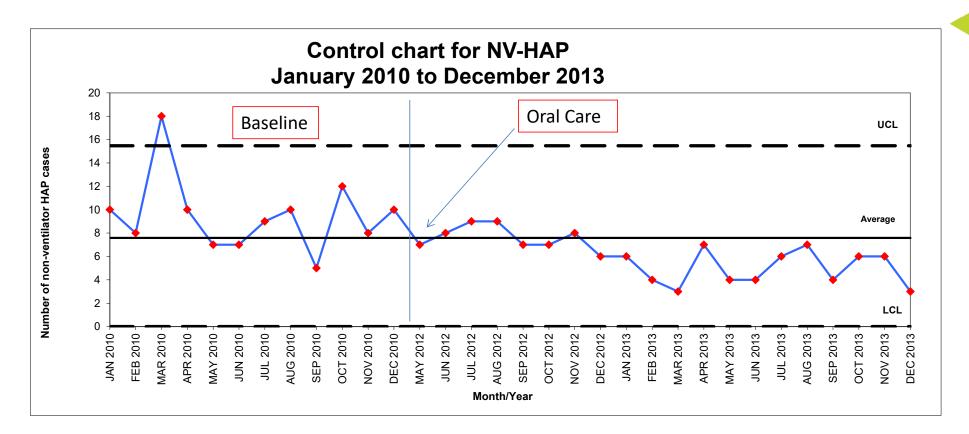
Best Practice	Our Gaps	Action To Take	
Comprehensive oral care for all (CDC, SHEA)	ICU vent patients only	Develop inclusive oral care protocol	
Oral CHG (0.12%) periop adult CV surgery and vent pts. (CDC, ATS, IHI)	Not using CHG on these patients	Added to preprinted orders, and to protocol	
Therapeutic oral care tools (ADA)	Poor quality oral care tools; Absence of denture care supplies	New tools and supplies.	

Protocol – Plain & Simple

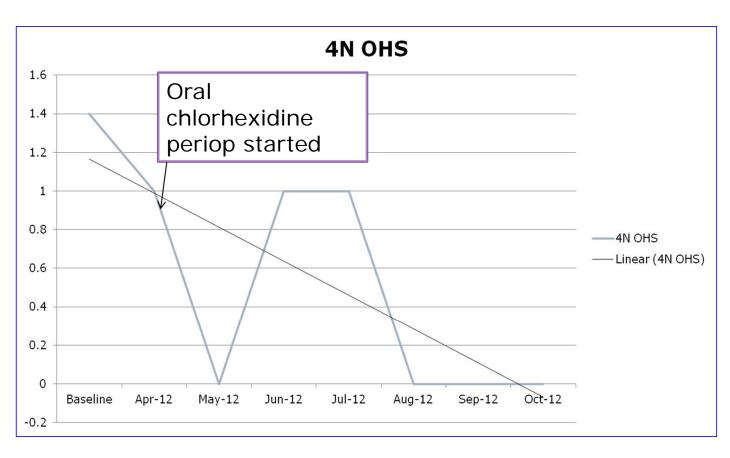
Patient Type	Tools Procedure		Frequency
Self Care / Assist	 Brush, paste, rinse, moisturizer Soft-bristled toothbrush Toothpaste with dentifrice Antiseptic mouth rinse (alcohol-free) Moisturizer (Petroleum-free) 	Provide tools Brush 1-2 minutes Rinse	4X / day
Dependent / Aspiration Risk	Suction toothbrush kit (4)	Package instructions	4X / day
Dependent / Vent	ICU Suction toothbrush kit (6)CHG for vent & cardiac surgery patients	Package instructions	6X / day
Dentures	Denture cup, brush Cleanser Adhesive	Remove dentures & soak Brush gums, mouth Rinse	4X / day

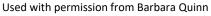
Provide Meaningful Data

- △ Ortho Unit had ZERO HAP cases in the last 4 months of 2013!!
- ▲ Great WORK!!
- A Remember, the goal is to provide and document oral care after each meal and before bedtime.



- Staff survey
- Pre Post education

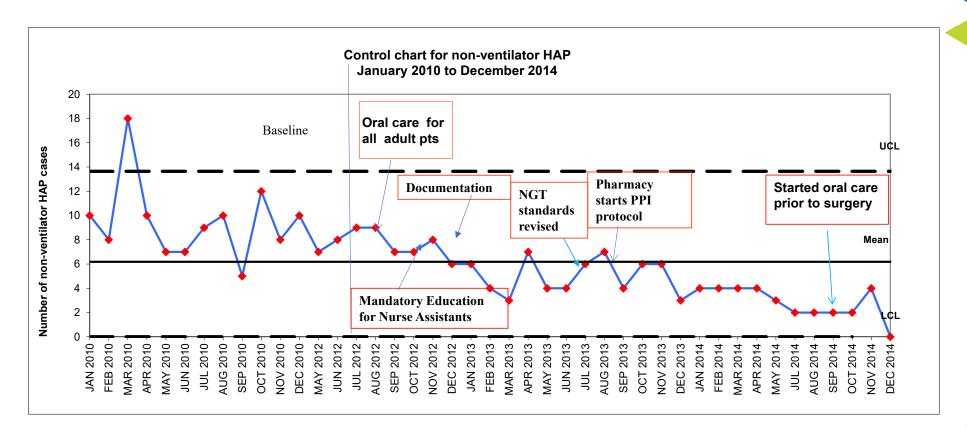

A Results:


- Awareness of oral care protocol (77%)
- Priority of care for NAs (96%)
- RN perception that their patients received oral care (300%)

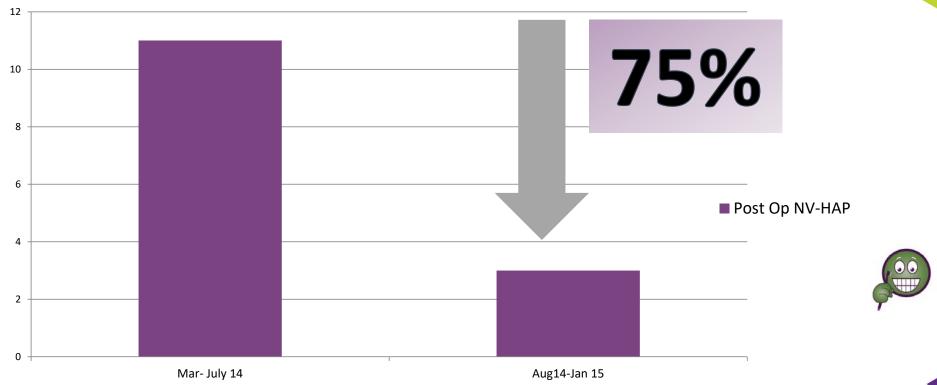
NV-HAP Incidence 50 % Decrease from Baseline

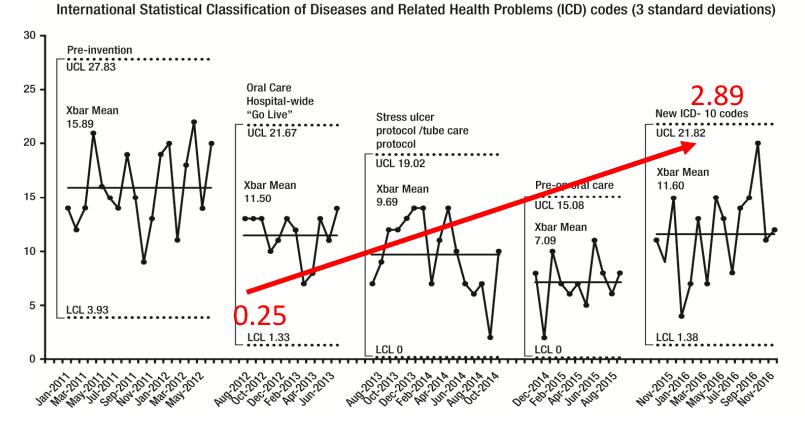
Open Heart Surgery Patients: NV-HAP Reduced 75%

- 60 NV-HAP avoided Jan 1 − Dec. 31 2013
- ♠ \$2,400,000 cost avoided
- 117,600 cost increase for supplies
- \$2,282,400 return on investment


8 lives saved

PRICELESS

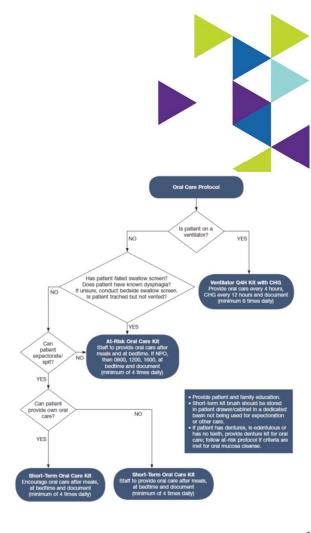

NV-HAP ↓ 70% from baseline!


Post-Operative NV-HAP (all adult inpatient surgery) Incidence 6 months Pre-Oral Care vs. 6 Months After

Sustainability Hospital Wide Oral Care from .25 to 2.89 (almost 3x a day)

Figure 1: Statistical process control R and X-bar-charts:

Outcomes:


From the Beginning to 2014

- △ Between May 2012 and December 2014
- △ Sutter Medical Center avoided 164 cases of NV-HAP:
 - △ \$5.9 million
 - △ 31 lives
 - △ 656-1476 extra days in the hospital

Nurse Driven Oral Care Protocol to Improve NV-HAP

- △ QI project, 650 bed level 1 trauma center
- △ Data measure retrospectively/prospectively using ICD 9 & 10 codes not POA for NV-HAP and VAP
- △ 7 months baseline, 7 months intervention
- ▲ Method:
 - △ Evaluated current practice, the literature and oral care supplies
 - △ Pilot program with new oral care protocols/supplies for self care, assisted oral care and ventilator oral care
 - △ Expanded to whole hospital post pilot area

Results

Staff adherence to protocol 76% (36%-100%)

▲ NV-HAP

△ Baseline: 202 charts/52 NV-HAP's-20 deaths

△ Post: 215 charts/26 NV-HAP's (p< 0.0001)-4 deaths

△ Baseline: 56 VAE's/ 12 VAP's (2.87 per 1000 vent days)

△ Post: 49 VAE's/3 VAP's (1.26 per 1000 vent days

50% reduction in NV-HAP, avoided 16 deaths & 1.4 million dollars

Figure 2. Patient Education Information Sheet

A Successful Program to \downarrow NVHAP in a Large Hospital System

0.0

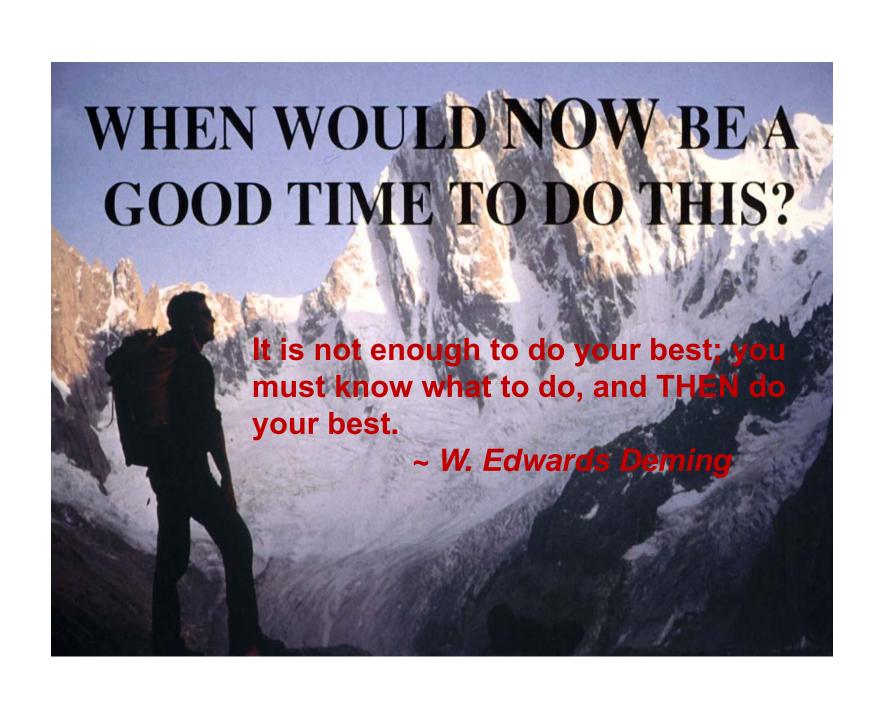
2011

2012

- 21 hospital system
- Longitudinal observational design
- Intervention
 - △ Upright for meals, mobilization, swallow evaluation, sedation restrictions, rigorous oral care, feeding tube care (ROUTE)
- Additional results
 - △ Reduction in antibiotic days
 - Carbapenem, quinolone, aminoglycoside & vancomycin
 - △ ↓ Benzodiazepine use

0.5

0.0


2019

p = 0.439

2017

2018

Lacerna CC, et al. *Infection Control & Hospital Epidemiology*. 2020;41(5):547-552.

3 Steps YOU can Take to Address NV-HAP

Two Options for Measuring NV-HAP Baseline and Outcome Metric

- ▲ A. International Classification of Diseases (ICD-10) for Pneumonia AND Not Present on Admission
 - \triangle J12 18.9 minus CAP, VAP, Pneumonitis
 - △ Use for tracking only
- ▲ B. ICD 10 NVHAP + NHSN definition for NVHAP
 - △ More labor-intensive; more accurate

Metrics for NVHAP

- Percent NVHAP (#NVHAP / #patients X 100)
- ▲ NVHAP/1000 pt days (#NVHAP / # pt days X 1000)
- **△** NVHAP Count
- △ No national benchmark so set internal goal
- △ Current literature: 1.22 5.9 / 1000 pt days

Future State--Objective Surveillance Definitions for NV-HAP: Clinical Indicators in the EHR

	Worsening oxygenation	≥3 days of new antibiotics	Temp > 38ºC	White Blood Cell Count <4 or >12	Chest-X-Ray or CT Chest	Respiratory culture
Definition #1	✓					
Definition #2	✓	√				
Definition #3	✓	✓	Either			
Definition #4	✓	✓	✓			
Definition #5	√	✓	✓	✓		
Definition #6	✓	√	√	√	✓	
Definition #7	\checkmark	\checkmark	Either		✓	
Definition #8	√	√	√	√	√	✓
Definition #9	✓	√	Either		Either	
Definition #10	✓	✓	✓	✓	Eith	er

Identified 0.6 event per 100 admission and associated with a 6 fold higher risk of death compared with matched controls

Process Metrics for NV-HAP (examples)

Reducing germs in mouth:

△ Frequency of oral care delivered / per patient day

Reducing aspiration risk:

- △ % patients with swallow screens complete
- △ % patients on continuous TF with HOB >30 degrees
- △ % patients up in chair for meals

Strengthen host defenses

- △ % non-ICU patients with daily mobilization
- △ % patients with BG 100-180
- △ % patients not on stress ulcer prophylaxis
- △ % patients on enteral feeding who receive >80% of ordered calories


3. Manage the Change

- △ Utilize a scientific model to provide structure Include:
 - △ Sponsorship support
 - △ Communication
 - △ Education for staff and patients/families
 - △ Engagement of staff
 - △ Feedback
 - △ Accountability

Forbid yourself to be deterred by poor odds just because your mind has calculated that the opposition is too great. If it were easy, everyone would do it.

Earn free CE credits

To get started:

- Register on
 Focus RN. stryker.com
 Please access on desktop, laptop, or tablet
- Check your email the week following your event. You'll receive an evaluation to complete.
- On your next visit to the website, you'll see a message prompting you to complete your evaluation. This will allow you to access your downloadable certificate of completion.

FocusRN.stryker.com

Stryker is accredited as a provider of continuing education in nursing by the California Board of Registered Nursing (provider number CEP 15927). CMR 27582


HAI prevention courses by Kathleen Vollman

https://www.medbridgeeducation.com/advancing-nursing

Kathleen M. Vollman MSN, RN, CCNS, FCCM, FCNS, FAAN Clinical Nurse Specialist / Educator / Consultant ADVANCING NURSING kvollman@comcast.net Northville, Michigan www.vollman.com

kvollman@comcast.net | www.Vollman.com