

Kathleen Vollman ADVANCING NURSING THROUGH KNOWLEDGE & INNOVATION

Kathleen M. Vollman MSN, RN, CCNS, FCCM, FCNS, FAAN
Clinical Nurse Specialist / Educator / Consultant
ADVANCING NURSING
kvollman@comcast.net
Northville, Michigan
www.vollman.com

Disclosures

- △ Consultant-Michigan Hospital Association Keystone Center
- Subject matter expert on CAUTI, CLABSI, HAPI, Sepsis, Safety culture for HRET/AHA
- △ Consultant and speaker bureau
 - △ Stryker's Sage business
 - △ LaJolla Pharmaceutical
 - △ Potrero Medical
- ▲ Baxter Advisory Board

Session Objectives

- △ Define key fundamental evidence-based nursing care practices for independent and dependent patients that reduce vent and non-vent HAP
- Discuss strategies to overcome barriers

Notes on Hospitals: 1859

"It may seem a strange principle to enunciate as the very first requirement in a Hospital that it should do the sick no harm."

- Florence Nightingale

Advocacy = Safety

The Why

1 in every 10 hospitalized Australians adults will develop an HAI

Australian Pneumonia Data

Pneumonia refers to an infection of the lungs.

Around 17,900 hospital-acquired episodes of pneumonia occur each year in Australian hospitals#

167.4 Highest rate at Principal Referral Hospitals[†]

46.6 Aggregate rate at Principal Referral Hospitals

Per 10,000 hospitalisations

If all hospitals reduced their rate to less than 46.6 per 10,000 hospitalisations, it would prevent at least 2,830 episodes of pneumonia

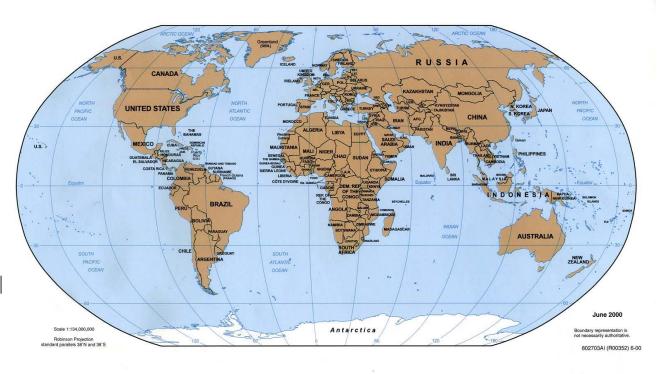
The cost associated with Hospital Acquired Pneumonia in Australia

Could cost the hospital an additional \$39,406

Patients with this
Pneumonia require 19.0
extra days in the hospital
compared to those who
don't have a Pneumonia.

2019-2020 Australian Data for HAC's

	Public I	nospitals	Private hospitals		
Complication class	Separatio ns	Per 100	Separation s	Per 100	
Pressure injury	2,317	0.0	748	0.0	
Falls resulting in fracture or other intracranial injury	2,340	0.0	731	0.0	
Healthcare associated infection	62,492	1.2	17,959	0.5	
Surgical complications requiring unplanned return to theatre ^(b)	8,041	0.1	3,192	0.1	
Unplanned intensive care unit admission(c)					
Respiratory complications	15,567	0.3	3,330	0.1	
Venous thromboembolism	3,567	0.1	2,251	0.1	
Renal failure	701	0.0	174	0.0	
Gastrointestinal bleeding	4,349	0.1	1,471	0.0	
Medication complications	14,043	0.3	2,364	0.1	
Delirium	18,261	0.3	6,420	0.2	
Persistent incontinence	573	0.0	317	0.0	
Malnutrition	2,082	0.0	703	0.0	
Cardiac complications	19,439	0.4	8,644	0.2	
Third and fourth degree perineal laceration during delivery	5,017	0.1	461	0.0	
Neonatal birth trauma	1,905	0.0	204	0.0	
Total	112,998	2.1	37,062	1.0	


⁽a) A separation is counted only once for each hospital-acquired complication category where at least one condition was reported for the separation.

2019-2020 20 Most Common Complication Diagnosis Australian Hospitals

Complic	cation class	Public hospitals	Private hospitals	Total
11.01	Delirium	18,261	6,420	24,681
3.01	Urinary tract infection	17,070	3,222	20,292
3.03	Pneumonia	13,835	6,448	20,283
14.02	Arrhythmias	10,339	5,974	16,313
3.04	Blood stream infection	12,157	2,847	15,004
6.02	Aspiration pneumonia	10,983	2,236	13,219
10.03	Hypoglycaemia	9,011	1,057	10,068
3.07	Infection associated with prosthetic/implantable devices	6,058	1,515	7,573
9.01	Gastrointestinal bleeding	4,349	1,471	5,820
3.02	Surgical site infection	4,005	1,604	5,609
15.01	Third and fourth degree perineal laceration during delivery	5,017	461	5,478
4.01	Post-operative haemorrhage/haematoma requiring transfusion and/or return to theatre	3,507	1,802	5,309
4.02	Surgical wound dehiscence	4,028	885	4,913
3.05	Central line and peripheral line associated bloodstream infection	3,564	1043	4,607
14.04	Acute coronary syndrome including unstable angina, STEMI and NSTEMI	3,636	888	4,524
3.06	Multi-resistant organism	3,646	837	4,483
6.01	Respiratory failure including acute respiratory distress syndrome requiring ventilation	3,430	836	4,266
14.01	Heart failure and pulmonary oedema	2,828	1092	3,920
7.02	Deep vein thrombosis	1,901	1,441	3,342
14.03	Cardiac arrest	2,526	720	3,246
Other co	mplications	20,543	6,170	26,713
Total se	parations	112,998	37,062	150,060
Total co	mplications	160,694	48,969	209,663

VAP/HAP

- ▲ VAP is associated with ↑ MV days and ↑ ICU & hospital LOS¹
- △ Attributable mortality estimated to be 4.0— 13.5% ¹
- Financial cost of a VAP episode has been estimated as approximately 15,000 to 40,000 US¹
- Europe and US-# 1 most prevalent HAI²
- Pneumonia was the third most common hospital acquired complication. In 2019 - 20, 9.7% of all hospital acquired complications were pneumonia^{3,4}
 - 35% VAP, 65% HAP³

Torres A, et al. Eur Respir J 2017;50(3):1700582
Mitchell BG, et al. Infect Dis Health. 2019;24(4):229-239.
Russo PL, et al. Antimicrobial Resistance & Infection Control, 2019;8:114
Australian Institute of Health and Welfare. Admitted patient care 2019-20 8: Safety and quality of health systems. 2021.
https://www.aihw.gov.au/reports-data/myhospitals/sectors/admitted-patients#more-data. Published 2021. Accessed July 13,

Building Blocks to Best Practice in Caring for Mechanically Ventilated Patients

Ventilator Bundle: HOB 30, Deep Vein Thrombosis (DVT) prophylaxis, Peptic Ulcer Disease (PUD) prophylaxis, Sedation interruption, Spontaneous breathing trial, daily care with chlorhexidine

VAP Bundle: HOB 30, Sedation interruption, Spontaneous breathing trial, oral care 6x per day, CHG rinse 2x per day, subglottic secretions drainage if expected to be ventilated > 72hrs

Risk Factor Categories for Hospital Acquired Pneumonia

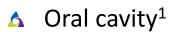
Factors that increase bacterial burden or colonization

Factors that increase risk of aspiration

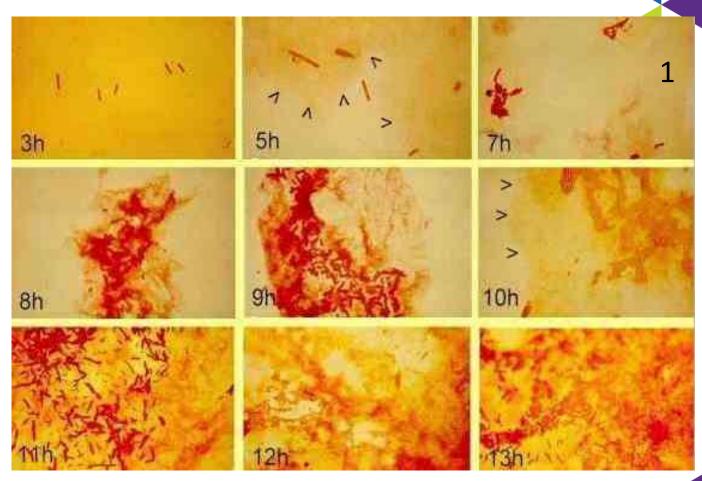
Modifiable Risk Factors

- Supine positioning
- Nasogastric tubes and condensate in ventilator tubing
- Acid-suppressing medications, such as antacids and H2 blockers, that are employed to prevent stress ulcer bleeding in ventilated patients
- △ Mechanical ventilation for >48 hours
- △ Admission to an ICU
- Duration of hospital or ICU

Single Ecosystem

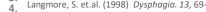

- Entire respiratory tract is one ecosystem¹
 - △ Upper-nasal and oral cavities
 - △ Lower-alveoli
- △ Not sterile environment¹
- Oral flora changes in hospitalized patients²
- A Relationship between dental plaque and pulmonary lavage fluid³
- Nasal duct Vocal Oral **Apparatus** cavity Trachea Ribs Upper Lobe Rib cage Middle Heart Lobe Lower ower Cardiac notch Diaphragm

^{1.} Huffnagle GB, et al. Mucosal Immunol. 2017 Mar;10(2):299-306


^{2.} Johanson WG, et al. N Engl J Med. 1969 Nov 20;281(21):1137-40

^{3.} Heo SM, et al. Clin Infect Dis. 2008 Dec 15;47(12):1562-70.

Where does Pneumonia Start: Oral Bacteria during Hospitalization & Illness



- \triangle > 1 billion oral microbes
- △ 700-1000 species
- △ Replicate's 5 x in 24hr period
- Disruption of Microbiome²
 - △ Plaque, gingivitis, tooth decay
 - △ Reduced salivary flow/change in pH
- △ 24-48 hours for HAP pathogens in mouth³
- If aspirated =100,000,000 bacteria/ml saliva into lungs⁴

http://helios.bto.ed.ac.uk/bto/microbes/biofilm.htm

Scannapieco FA, Stewart EM, Mylotte JM.. Crit Care Med. 1992;20:740-745

Loesche, W. 2012

Endotracheal / Nasogastric Tube/ Sinusitis

- △ Carriage of oropharyngeal bacteria during intubation¹
- △ Endotracheal tube acts as a reservoir for infecting microorganisms¹
- △ If cuff pressure < 20 cm $4x \uparrow risk VAP^3$
 - △ Cuff pressure range btwn 25-40cm (JBI-Level A) with maintenance at 25cm-30cm of H2O pressure.
 - △ No difference between freq & infrequent measurement⁵
 - \triangle Continuous monitoring resulted in a lower portion of out-of-range cuff pressure (11% vs. 51.7% p< 0.001) and \downarrow in VAP⁵
- △ Use oral ET versus nasal^{2,3}
 - △ NGT increases risk of sinusitis/gastric reflux & increases oropharyngeal colonization
 - △ Sinusitis increases the risk of nosocomial pneumonia by 3-fold
 - Diaconu O, et al. J Crit Care Med (Targu Mures). 2018;4(2):50-55.
 - . Carstens J. Joanna Briggs Institute, 2010
 - 3. Sole, ML, et al. AJCC, 2011;20:109-117
 - Nseir S, et al. Ann Intensive Care 2015;S:43
 - 5. Letvin A. et al. Resp Care 2018:63(5):495-501

Oral Cavity & VAP

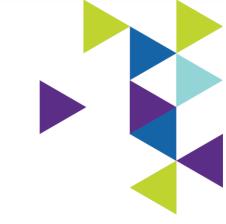
- △ 89 critically ill patients
- Examined microbial colonization of the oropharynx through out ICU stay
- Used pulse field gel electrophoresis to compare chromosomal DNA
- A Results:
 - Diagnosed 31 VAPs
 - 28 of 31 VAPs the causative organism was identical via DNA analysis

- △ 49 elderly nursing home residents admitted to the hospital
- Examined baseline dental plaque scores & microorganism within dental plaque
- Used pulse field gel electrophoresis to compare chromosomal DNA
- A Results
 - △ 14/49 adults developed pneumonia
 - 10 of 14 pneumonias, the causative organism was identical via DNA analysis

Risk Factor Categories for Hospital Acquired Pneumonia

Factors that increase bacterial burden or colonization

Factors that increase risk of aspiration

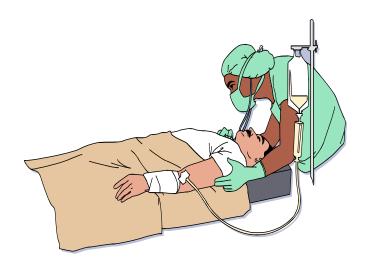

Micro Aspiration during Sleep in Healthy Subjects

- Prospective duplicate full-night studies
- △ 10 normal male's 22-55 years of age
- Methods:
 - Radioactive 99 mTc tracer inserted into the nasopharynx
 - Lung scans following final awakening
 - No difference in sleep efficacy between 2 study nights

Results:

50%

In the lung parenchyma



Body Position: Supine versus Semi-recumbent (30-45 degrees)

es)

Methodology

- 19 mechanically ventilated patients
- 2 period crossover trial
- Study supine and semirecumbent positions over 2 days
- Labeled gastric contents (Tc 99m sulphur colloid)
- Measured q 30 min content of gastric secretions in endobronchial tree in each position
- △ Sampled ET secretions, gastric juice & pharyngeal contents for bacteria

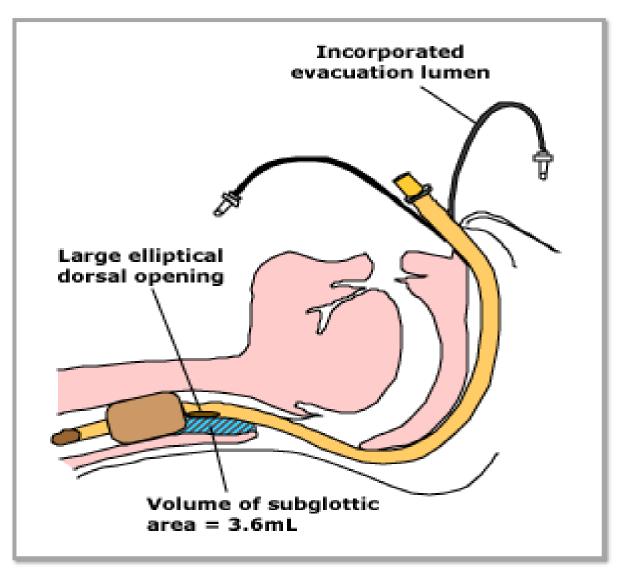
Body Position: Supine versus Semi-recumbent

Results:

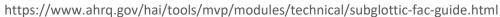
A Radioactive contents higher in endobronchial secretions in supine patients

▲ Time dependent:

- Supine: 298cpm/30min vs.2592cpm/300min
- HOB: 103cpm/30min vs.216cpm/300min



Same microbes cultured in all 3 areas


• HOB: 32%

Supine: 68%

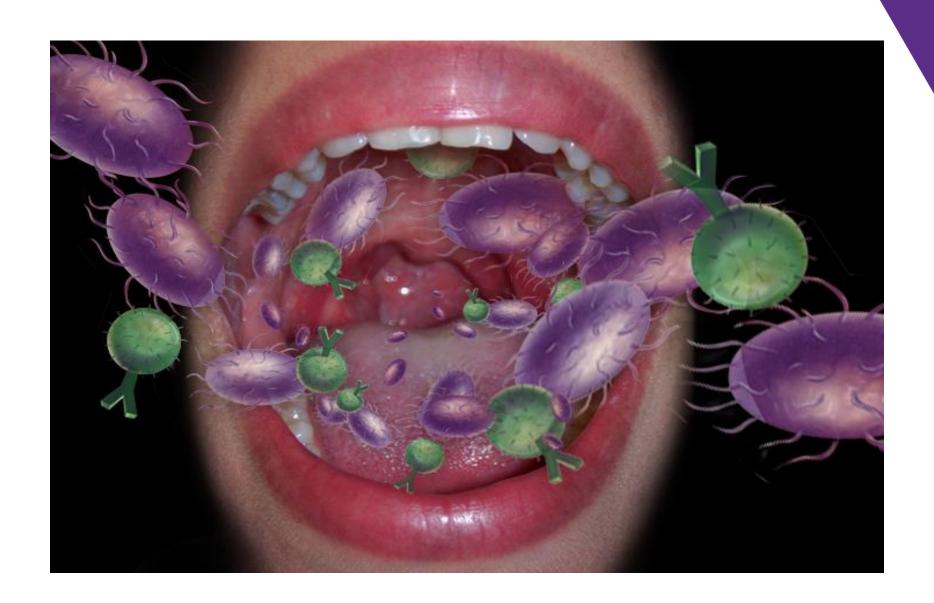
Current Subglottic Suctioning Endotracheal Tubes

Subglottic suctioning ETTs in patients mechanically ventilated for >72 hours

Update: Subglottic Secretion Drainage Meta-Analysis

20 RCT's, studies from 1992-2017, 3684 Patients

VAP Incidence


First author,	S	SD	Co	ntrol		Weight
year	VAP	Total	VAP	Total	RR (95% CI)	%
MAHMOODPOOR, 2017	30	138	46	138	0.65 (0.44-0.97)	8.16
DEEM, 2016	10	34	14	36	0.76 (0.39–1.47)	1.97
JENA, 2016	11	25	13	25	0.85 (0.47–1.51)	2.11
GOPAL, 2015	13	120	25	120	0.52 (0.28-0.97)	4.84
DAMAS, 2015	15	170	32	182	0.50 (0.28-0.89)	6.12
TAO, 2014	52	102	34	47	0.70 (0.54-0.91)	16.68
SEYFI, 2013	4	40	7	40	0.57 (0.18–1.80)	0.87
LACHERADE, 2010	25	169	42	164	0.58 (0.37-0.90)	8.07
ZHENG, 2008	9	30	16	31	0.58 (0.31–1.11)	3.55
YANG, 2008	12	48	20	43	0.54 (0.30-0.96)	5.15
Bouza, 2008	12	331	19	359	0.69 (0.34–1.39)	2.07
LORENTE, 2007	11	140	31	140	0.45 (0.19-0.68)	9.47
Liu QH, 2006	14	41	30	45	0.51 (0.32-0.82)	9.02
Liu SH, 2006	3	48	10	50	0.31 (0.09–1.07)	2.40
GIROU, 2004	5	8	6	10	1.04 (0.50-2.18)	0.81
SMULDERS, 2002	3	75	12	75	0.25 (0.07-0.85)	3.79
Bo, 2000	8	35	15	33	0.50 (0.25–1.03)	3.74
KOLLEF, 1999	8	160	15	183	0.61 (0.27-1.40)	1.77
VALLES, 1995	14	76	25	77	0.57 (0.32-1.01)	4.85
MAHUL, 1992	9	70	21	75	0.46 (0.23-0.93)	4.56
Overall (12=0.0%, p=0	.841)				0.56 (0.48-0.63)	100.00

Mortality

First author,	SS	5D	Cor	ntrol			Weight
year	Events	Total	Events	Total		RR (95% CI)	%
MAHMOODPOOR, 2017	36	138	48	138		0.75 (0.52-1.08)	9.36
DEEM, 2016	9	34	9	36		1.06 (0.48-2.35)	0.82
GOPAL, 2015	2	120	1	120		2.00 (0.18-21.76)	0.01
DAMAS, 2015 (ICU)	63	170	74	182		0.91 (0.70-1.19)	12.25
DAMAS, 2015 (hospital)	78	170	93	182	_	0.90 (0.72-1.12)	18.76
TAO, 2014	48	102	29	47		0.76 (0.56-1.03)	12.88
LACHERADE, 2010	80	169	84	164		0.92 (0.74-1.15)	17.40
ZHENG, 2008	8	30	12	31		0.69 (0.33-1.45)	2.31
YANG, 2008	32	48	29	43	- •	0.99 (0.74-1.32)	8.63
Bouza, 2008	23	331	26	359		0.96 (0.56-1.65)	2.43
LORENTE, 2007	26	140	32	140		0.81 (0.51-1.29)	4.77
Liu QH, 2006	18	41	13	45	-	1.52 (0.86-2.70)	0.85
Liu SH, 2006	5	48	11	50		0.47 (0.18-1.26)	2.45
SMULDERS, 2002	12	75	10	75		1.20 (0.55-2.61)	0.68
KOLLEF, 1999	6	160	8	183		0.86 (0.30-2.42)	0.64
VALLES, 1995	39	95	35	95		1.11 (0.78-1.59)	4.37
MAHUL, 1992	17	70	16	75		1.14 (0.63-2.07)	1.37
Overall (I ² =0.0%, p=0.888))				♦	0.88 (0.80-0.97)	100.00
				0	0.5 1 1.5 2 2.5		

FIGURE 3 Forest plot comparing subglottic secretion drainage (SSD) versus non-SSD on mortality. RR: risk ratio; ICU: intensive care unit.

Oral Hygeine

Polling Question

- What is your current oral care regime at your facility?
 - △ CHG alone
 - △ Toothbrushing
 - △ Toothbrushing with CHG
 - △ Toothbrushing, CHG, cleansing swabs(Comprehensive kit)
 - △ Nothing

What Does the Evidence Tell Us?

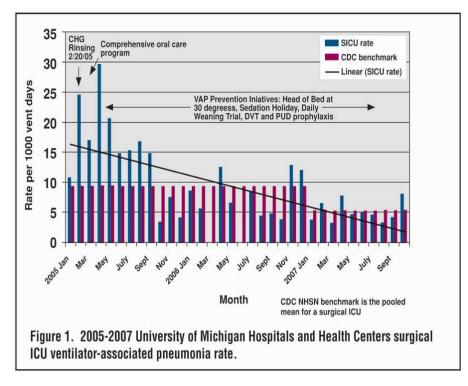
Brush
CHG rinse alone
CHG rinse in Combination
Swab/Clean/Moisturize
Suction

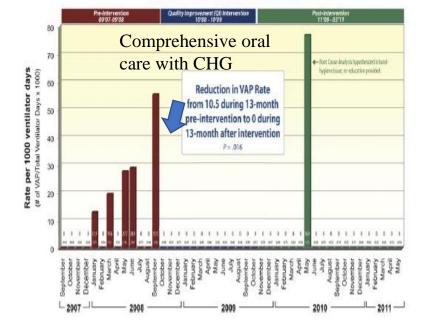
All of the above

Comprehensive Oral Care Program

Literature Review: Oral Care Impact of VAP

Comprehensive Oral Care:


- Reduction in VAP from 5.6 to 2.2¹
- Reduction in VAP from 4.10 (2005) to (2.15) in 2006 with addition of CPC & comprehensive oral care. Vent bundle & rotational therapy already being performed²
- Reduction in VAP from 12.0 to 8.0 (p=.060) with 80% compliance, vent bundle already being preformed, 1538 patients randomized to control or study group, Additional outcomes; ↓ vent days (p=.05), ↓ ICU LOS (p=.05) ↓ time to VAP (p= <.001) & reduction in mortality (p=.05)³
 - 1. Schleder B. et al. J Advocate Health 2002;4(1):27-30)
 - 2. Powers J, et al. J Nurs Care Qual. 2007 Oct-Dec;22(4):316-21
 - 3. Garcia R et al AJCC, 2009;18:523-534)



Literature Review: Oral Care Impact of VAP/Dependant

Comprehensive Oral Care & CHG:

• Reduction in VAP to zero for 2 years, vent bundle, mobility, oral care & CHG with comprehensive education preformed (Murray TM et al. AACN Advanced Critical Care. 2007;18(2):190-199)

Ventilator-Associated Pneumonia

Heck K, et al. American Journal of Infection Control 40 (2012) 877-9

Does CHG Oral Care Impact VAP and Mortality

Klompas Study-Retrospective review

- △ Single center
- △ Impact of vent bundle (5536 patients)
- △ Connection of CHG with increase mortality on patients vented > 3 days

△ Deschepper study: Retrospective Review

- △ Hospital wide retrospective cohort (82,274 patients)
- △ 11,133 patients received CHG oral care
- △ Divided into low exposure-cumulative dose < 300 mg (8080 pts)
- △ High exposure > 300 mg (3053 pts)
- △ 300 mg CHG is equivalent to 1 bottle of 250ml of oral care soln at .12%-covers 5-6 days at 3 times a day)
- In the sickest group CHG low or high exposure was not a risk for increased mortality
- Showed improvement on mortality in ICU patients ventilated < 96hrs and not harm if vented > 96 hrs
- Greatest risk for mortality increase is use in non-ICU patients.

Cochrane Meta-Analysis 2020 of RCT's

Analysis 1.1. Comparison 1: Chlorhexidine versus placebo/usual care, Outcome 1: Incidence of VAP

	Chlorhe		Placebo/Us	nal care		Risk Ratio	Risk Ratio	
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	M-H, Random, 95% CI	
1.1.1 Chlorhexidine solution	versus placei	bo (no toot	hbrushing in	either gro	пр)			
Fu 2019	7	40	37	40	9.0%	0.19 [0.10, 0.37]	→	
Meidani 2018	6	50	15	50	7.6%	0.40 [0.17, 0.95]		
Grap 2011 (1)	7	21	10	18	8.6%	0.60 [0.29, 1.25]		
Ozcaka 2012	12	29	22	32	10.6%	0.60 [0.37, 0.98]	_	
Bellissimo-Rodrigues 2009	16	64	17	69	9.7%	1.01 [0.56, 1.83]		
Tuon 2017	4	8	2	8	4.5%	2.00 [0.50 , 8.00]		
Subtotal (95% CI)		212		217	50.0%	0.57 [0.33, 1.00]		
Total events:	52		103				_	
Heterogeneity: Tau ² = 0.33; Ch	ni² = 17.96, di	f = 5 (P = 0	.003): I ² = 729	6				
Test for overall effect: Z = 1.97	,	- (,					
1.1.2 Chlorhexidine gel versu	ıs placebo (n	o toothbru	shing in eithe	r group)				
Cabov 2010	1	17	6	23	2.6%	0.23 [0.03, 1.70]		
Koeman 2006	13	127	23	130	9.4%			
Subtotal (95% CI)		144		153	12.0%	0.53 [0.29, 0.97]		
Total events:	14		29					
Heterogeneity: Tau ² = 0.00; Ch	ni² = 0.77. df:	= 1 (P = 0.3	RR): I ² = 0%					
Test for overall effect: Z = 2.04		- (,,					
1.1.3 Chlorhexidine solution	versus place	bo (toothb	rushing both	groups)				
Tantipong 2008	5	58	10	52	6.6%	0.45 [0.16 , 1.23]	-	
Scannapieco 2009 (2)	14	97	12	49	8.9%	0.59 [0.30 , 1.18]		
Berry 2011 (3)	4	33	1	43	2.4%	5.21 [0.61 , 44.47]	-	_
Subtotal (95% CI)		188		144	17.8%	0.74 [0.29, 1.89]		
Total events:	23		23					
Heterogeneity: Tau ² = 0.36; Cl	ni ² = 4.30, df	= 2 (P = 0.1	12); I ² = 53%					
Test for overall effect: Z = 0.64	4 (P = 0.53)							
1.1.4 Chlorhexidine gel versu	ıs placebo (to	othbrushi	ng both grou	ps)				
Kusahara 2012a (4)	15	46	16	50	9.8%	1.02 [0.57, 1.82]		
Meinberg 2012	18	28	11	24	10.4%		_	
Subtotal (95% CI)		74		74	20.2%	1.22 [0.83, 1.79]		
Total events:	33		27				•	
Heterogeneity: Tau ² = 0.00; Ch		= 1 (P = 0.4						NNT 12
Test for overall effect: Z = 1.00		,						ININI T
		618		588	100.0%	0.67 [0.47,0.97]		
Total (95% CI)			182				()	
. ,	122		182					
Total events:		f = 12 (P =		6%		ā	1.02 0.1 10	50
Total (95% CI) Total events: Heterogeneity: Tau ² = 0.26; Cl Test for overall effect: Z = 2.14	ni² = 35.29, di	f = 12 (P =		66%		-		50 scebo/u care

Analysis 3.1. Comparison 3: Toothbrushing versus no toothbrushing, Outcome 1: Incidence of VAP

	Toothbr	ushing	No toothb	rushing		Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	M-H, Random, 95% CI
3.1.1 Powered toothb	rush + usual	care (± Cl	HX) versus 1	ısual care ((± CHX)		
Pobo 2009 (1)	15	74	18	73	23.5%	0.82 [0.45 , 1.50]	_
Yao 2011 (2)	4	28	14	25	12.7%	0.26 [0.10, 0.67]	
Subtotal (95% CI)		102		98	36.2%	0.49 [0.16, 1.53]	
Total events:	19		32				~
Heterogeneity: Tau ² = (0.52; Chi ² = 4	.05, df = 1	(P = 0.04);	² = 75%			
Test for overall effect:	Z = 1.23 (P =	0.22)					
3.1.2 Toothbrush + CI	HX versus C	HX alone					
Lorente 2012	21	217	24	219	25.7%	0.88 [0.51 , 1.54]	4
De Lacerda 2017	17	105	28	108	26.4%	0.62 [0.36 , 1.07]	-
Subtotal (95% CI)		322		327	52.1%	0.74 [0.50, 1.09]	
Total events:	38		52				•
Heterogeneity: Tau ² = (0.00; Chi ² = 0	.77, df = 1	(P = 0.38); I	$I^2 = 0\%$			
Test for overall effect:	Z = 1.53 (P =	0.13)					
3.1.3 Toothbrush + po	vidone iodin	e versus p	ovidone iod	ine alone			
Long 2012	4	31	11	30	11.6%	0.35 [0.13, 0.98]	
Subtotal (95% CI)		31		30	11.6%	0.35 [0.13, 0.98]	
Total events:	4		11				•
Heterogeneity: Not app	licable						
Test for overall effect:	Z = 1.99 (P =	0.05)					
Total (95% CI)		455		455	100.0%	0.61 [0.41, 0.91]	
Total events:	61		95				
Heterogeneity: Tau ² = (0.08; Chi ² = 6	5.71, df = 4	(P = 0.15); I	[2 = 40%			0.01 0.1 1 10 1
Test for overall effect:	Z = 2.44 (P =	0.01)					Toothbrushing No toothbrush
Test for subgroup diffe	rences: Chi² =	= 2.03, df =	= 2 (P = 0.36), I ² = 1.5%			

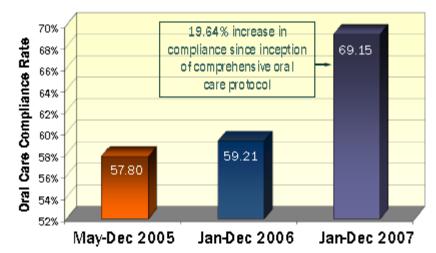
Impact on Mortality

Analysis 1.2. Comparison 1: Chlorhexidine versus placebo/usual care, Outcome 2: Mortality

	Chlorhe	Chlorhexidine Placebo/usual care				Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	M-H, Random, 95% CI
1.2.1 Chlorhexidine solution v	versus placel	oo (no too	hbrushing in	either gro	up)		
Bellissimo-Rodrigues 2009	34	64	32	69	30.1%	1.15 [0.81, 1.61]	<u> </u>
Ozcaka 2012	17	29	19	32	20.1%	0.99 [0.65, 1.50]	•
Meidani 2018	4	50	5	50	2.2%	0.80 [0.23, 2.81]	
Fu 2019	3	40	7	40	2.2%	0.43 [0.12, 1.54]	
Subtotal (95% CI)		183		191	54.6%	1.03 [0.80 , 1.33]	•
Total events:	58		63				Ĭ
Heterogeneity: Tau ² = 0.00; Ch	i ² = 2.46, df =	3 (P = 0.4	18); I ² = 0%				
Test for overall effect: $Z = 0.21$	(P = 0.83)						
1.2.2 Chlorhexidine gel versu	s placebo (no	o toothbru	shing in eith	er group)			
Cabov 2010	0	17	0	23		Not estimable	
Subtotal (95% CI)		17		23		Not estimable	
Total events:	0		0				
Heterogeneity: Not applicable							
Test for overall effect: Not appl	licable						
1.2.3 Chlorhexidine solution v	versus placel	oo (toothb	rushing both	groups)			
Tantipong 2008	36	102	37	105	25.9%	1.00 [0.69, 1.45]	.
Scannapieco 2009	16	116	8	59	5.7%	1.02 [0.46, 2.24]	+
Subtotal (95% CI)		218		164	31.6%	1.00 [0.72 , 1.40]	•
Total events:	52		45				Ĭ
Heterogeneity: Tau ² = 0.00; Ch	i ² = 0.00, df =	= 1 (P = 0.9	97); I ² = 0%				
Test for overall effect: $Z = 0.03$	(P = 0.98)						
1.2.4 Chlorhexidine gel versu	s placebo (to	othbrushi	ng both grou	ıps)			
Kusahara 2012a (1)	8	46	12	50	5.5%	0.72 [0.33, 1.61]	
Meinberg 2012	13	28	9	24	8.3%	1.24 [0.65, 2.38]	-
Subtotal (95% CI)		74		74	13.8%	1.00 [0.59 , 1.68]	•
Total events:	21		21				Ť
Heterogeneity: Tau ² = 0.01; Ch	i ² = 1.06, df =	= 1 (P = 0.3	30); I ² = 6%				
Test for overall effect: $Z = 0.01$	(P = 0.99)						
Total (95% CI)		492		452	100.0%	1.02 [0.84 , 1.23]	
Total events:	131		129				
Heterogeneity: Tau ² = 0.00; Ch	i ² = 3.50, df =	7 (P = 0.8	34); I ² = 0%			0.0	002 0.1 1 10 500
Test for overall effect: $Z = 0.17$	(P = 0.86)						s chlorhexidine Favours placebo/usi
		lf = 2 (P =					-

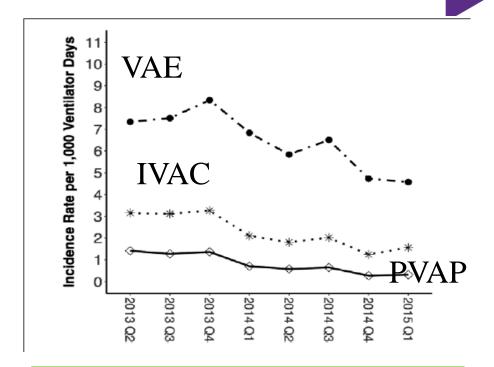
It is More than CHG

- △ .12% CHG application 2x daily is a small part of the oral care equation
- △ It is the comprehensive and frequent delivery of oral hygiene, including toothbrushing and cleansing


Does Compliance Make A Difference?

Oral care compliance & use of the ventilator bundle resulted in a 89.7% reduction in VAP

VAP rates for the years of the study


Compliance rates for the years of the study

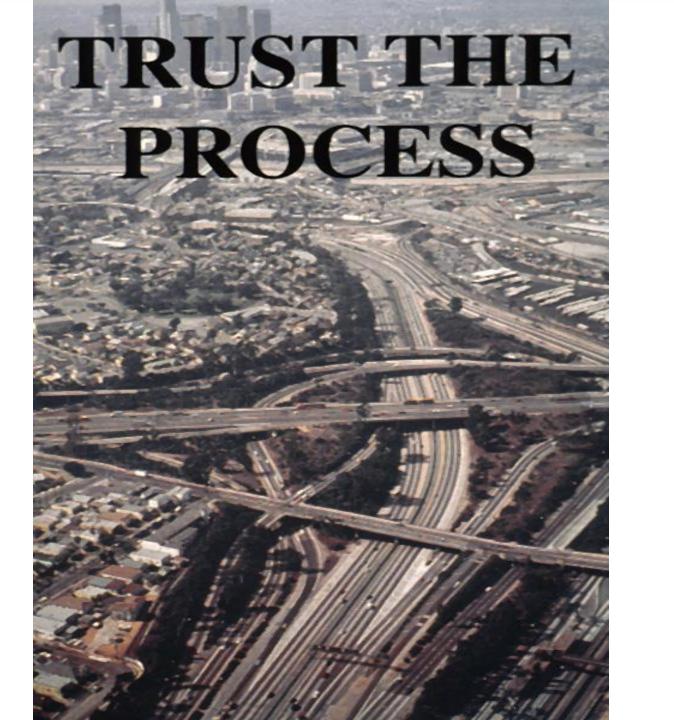
Impact of a New Bundle/2 State Collaborative

- △ 38 hospitals, 56 ICU's in 2 states from October 2012 to March 2015
- Evidence based interventions, teamwork & safety culture
- A Head-of-bed elevation, use of subglottic secretion drainage endotracheal tubes, oral care, chlorhexidine mouth care, and daily spontaneous awakening and breathing trials.

- VAE: 7.34 to 4.58 cases per 1,000 ventilator-days (p = 0.007)
- IVAC 3.15 to 1.56 per 1,000 ventilator days (p = 0.018)
- PVAP 1.41 to 0.31 cases per 1,000 ventilator-days (p = 0.012)

Building Blocks to Best Practice in Caring for Mechanically Ventilated Patients

Ventilator Bundle: HOB 30, Deep Vein Thrombosis (DVT) prophylaxis, Peptic Ulcer Disease (PUD) prophylaxis, Sedation interruption, Spontaneous breathing trial, daily care with chlorhexidine¹


VAP Bundle: HOB 30, Sedation interruption, Spontaneous breathing trial, oral care 6x per day, CHG rinse 2x per day, subglottic secretions drainage if expected to be ventilated > 72hrs²

ABCDE Bundle: Assess & manage pain, Both Spontaneous awakening trial (SAT) & spontaneous Breathing trial(SBT), Choice of Sedation, Delirium Assessment and management, Early Mobility, Family and Patient Engagement³

[.] http://www.ihi.org/resources/Pages/Tools/HowtoGuidePreventVAP.aspx

Rawat N, et al. Crit Care Med, 2017;45:1208-1215

www.ICUliberation.org

Non-Vent Pneumonia: Addressing Risk Factors

Build the Will: NV-HAP Causes Harm

- A HAP 1st most common HAI in U.S.^{1,2}
- △ 1 in every 4 hospital infections are pneumonia¹
 - △ 60% non-ventilator
- \triangle Increased mortality \rightarrow 15.5%-30.9%³
 - △ 8½ x more likely to die than equally sick patients who did not get non-vent HAP⁴
- \triangle Increased morbidity \rightarrow 50% are not discharged home^{5,6,7}
 - \triangle Extended LOS \rightarrow 7-9 days^{5,6,7}
 - \triangle Increased Cost \rightarrow \$36K to \$54K per case⁶
 - \triangle 2x likely for readmission <30 day^{5,6}
 - △ 46% ↑ ICU utilization^{5,6}
 - △ Increase antibiotic utilization⁸

- 1. Magill SS, et al. NEJM 2018;379:1732-1744
- 2. Strassle PD, et al. Infect Control Hosp Epidemiol. 2020 Jan;41(1):73-79.
- B. Giuliano K, et al. Am J of Infect Control. 2018;46:322-327
- 4. Micek ST, et al. Chest. 2016 Nov;150(5):1008-1014.
- 5. Baker D, Quinn B et al. J Nurs Care Qual, 2019 1-7
- 6. Giuliano K, et al. Am J of Infect Control. 2018;46:322-327
- . Davis J et al. Pa Patient Safety Advisory, 2018;15(3)
- Lacerna CC, et al. Infec control & Hosp Epidemiology 2020;41, 547-552

Hospital-Acquired Pneumonia:

Non-Ventilated versus Ventilated Patients in Pennsylvania

Purpose:

△ Compare VAP and NV-HAP incidence, outcomes

Methods:

- Pennsylvania Database queried
- △ All nosocomial pneumonia data sets (2009-2016)

Results:

Year	Number of NV-HAP Patients	Number of NV-HAP Patients Who Died	Percentage of Patients with NV-HAP Who Died (Confidence Interval)	Number of VAP Patients	Number of VAP Patients Who Died	Percentage of Patients with VAP Who Died (Confidence Limit)
2009	1,977	364	18.41 (16.52–20.3)	922	163	17.68 (14.96–20.39)
2010	1,848	366	19.81 (17.78–21.83)	737	144	19.54 (16.35–22.73)
2011	1,780	318	17.87 (15.9–19.83)	643	127	19.75 (16.32–23.19)
2012	1,620	307	18.95 (16.83–21.07)	571	112	19.61 (15.98–23.25)
2013	1,528	285	18.65 (16.49–20.82)	767	160	20.86 (17.63–24.09)
2014	1,419	256	18.04 (15.83–20.25)	901	199	22.09 (19.02–25.16)
2015	1,427	277	19.41 (17.13–21.7)	912	218	23.90 (20.73–27.08)
2016	1,380	280	20.29 (17.91–22.67)	980	221	22.55 (19.58–25.52)
Total	12,979	2453	18.89%	6433	1344	20.89%

- Mortality
- Incidence
- ▲ Total deaths
- ▲ Total cost
- Wide-spread

NV-HAP SMCS Research Findings: 2010

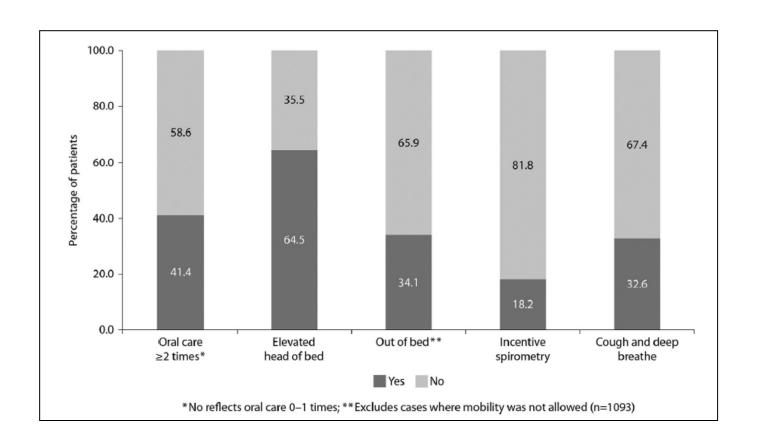
Incidence:

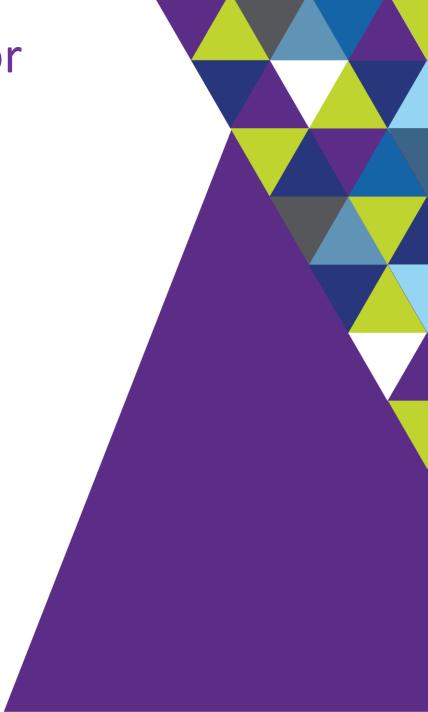
- △ 115 adults
- △ 62% non-ICU
- △ 50% surgical
- △ Average age 66
- Common comorbidities:
 - CAD, COPD, DM, GERD
- Common Risk Factors:
 - Dependent for ADLs (80%)
 - CNS depressant meds (79%)

24,482 patients and 94,247 pt days

Cost:

- \$4.6 million
- △ 23 deaths
- △ Mean Extended LOS 9 days
- △ 1,035 extra days




HAPPI-2 Incidence of Non-Ventilator Hospital-Acquired Pneumonia

- Multicenter retrospective chart review
- Extracted NV-HAP cases per the 2014 ICD-9-CM codes for pneumonia not POA and the 2013 CDC case definition
- 21 hospitals completed data collection
- Measured nursing care missed 24hrs before diagnosis
- △ Non-vent HAP occurred on every unit

HAPPI-2 Incidence of Non-Ventilator Hospital-Acquired Pneumonia

Missed nursing care 24 hours prior to Non-Vent HAP dx.

HAPPI-2 Incidence of Non-Vent Hospital-Acquired Pneumonia

Results:

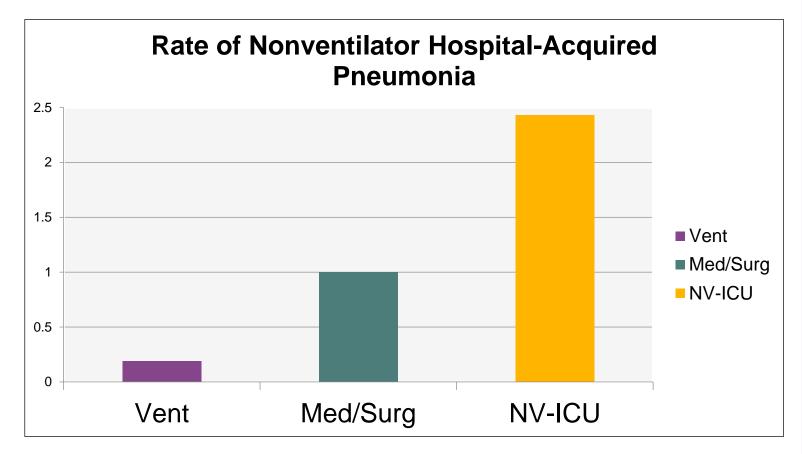
- ▲ 1,300 NV-HAP (0.12-2.28 per 1,000 pt days)
 - △ 15.8% mortality
 - \triangle 50% < 66 yrs old
 - △ 63% non-surgical
 - △ 70.8% outside the ICU
 - △ 27.3 % in ICU
 - △ 18.8% transferred to ICU
 - △ 37.3% LOS >20 days
 - \triangle 57.7% LOS > 15 days
 - △ 40.6% admitted from home were discharged back to home
 - △ 19.3% readmitted within 30 days
 - \triangle \$36.4 -\$52.56 million in extra costs

- Med-Surg (43.1%; n = 560)
- Telemetry (8.5%; n = 111)
- Progressive (7.2%; n = 93)
- Oncology (4.9%; n = 64)
- Orthopedic (2.8%; n = 37)
- Neurology (1.5%; n = 19)
- Obstetric (0.2%; n = 3)

Is Pneumonia Part of the Sepsis Picture?

30-50% of sepsis cases may initiate with pneumonia¹

Site of infection	Frequency %		Mortality %		
	Male	Female	Male	Female	
Respiratory	41.8	35.8	22.0	22.0	
Bacteremia	21.0	20.0	33.5	34.9	
Genitourinary	10.3	18.0	8.6	7.8	
Abdominal	8.6	8.1	9.8	10.6	
Device related	1.2	1.0	9.5	9.5	
Wound/ soft tissue	9.0	7.5	9.4	11.7	
Central nervous system	0.7	0.5	17.3	17.5	
Endocarditis	0.9	0.5	23.8	28.1	
Other/ unspecified	6.7	8.6	7.6	6.5	


Risk of developing sepsis 28x greater with NVHAP than with pneumonia on admission²

^{1.} Angus DC, et al. N Engl J Med. 2013 Aug 29;369(9):840-51.

^{2.} Giuliano K, et al. Am J of Infect Control. 2018;46:322-327

► Where is the Highest Risk for NV-HAP?

NV-HAP per 1000 patient days

NV-HAP Prevention Strategies: Systematic Review

- ▲ Improving oral hygiene
- Increasing mobility/patient movement
- Dysphagia management

Addressing the risk-factors associated with NV-HAP/ through evidence based fundamental nursing care strategies for dependent and independent patients

Risk Factors for Pneumonia

Pathogens

- Hospital environment
- Healthcare workers
- Disruption of normal oral flora

Aspiration

- Supine position
- CNS depressant medications

Invasive tubes

Weak Host

- Surgery
- Immobility
- Co-morbid conditions

Weak Host: Who is at Highest Risk?

- ▲ Male
- Elderly
- Surgical
- △ ICU
- ♠ Chronic disease
 - △ DM, CHF, CKD, COPD, alcoholism

- ▲ Immunocompromised
- △ More than 6 medications
- △ Low albumin
- △ On antibiotics
- △ Dependent for ADLs
- **&** Smokers

Stewardship of Stress Ulcer Prophylaxis (SUP)

- The most common complication of SUP is pneumonia¹
- ▲ ICU enteral fed patients¹
 - △ no benefit & may increase risk for pneumonia Avoid unnecessary use
- △ Acute Stroke patients (Systematic Review & Meta-Analysis)^{2,3}
 - △ Acid suppressive medications are an important contributor to pneumonia development, especially PPIs
- △ May lead to loss of protective bacteriostatic effect of gastric acid^{1,3}
- △ Higher risk of Clostridium difficile infection when combined with antibiotics¹

- 1. Huang et. al (2018). Critical Care 22(20), 1-9.
- Marchina et al (2019). J of the Neurological Sciences, 400;122-128.
- Herzig SJ. et. Al (2014) Ann Neurol. 76(5): 712-178.

Systematic Review of Inpatient Mobilization

- △ Literature review of research studies that provides evidence to the consequences of mobilizing or not mobilizing hospitalized adult patients
- 36 studies were included
- △ Findings in four theme areas:
 - △ Physical outcomes include pain relief, reduced deep vein thrombosis, less fatigue, less delirium, less pneumonia, improved physical function (no relationship to falls)
 - \triangle Psychological outcomes include less anxiety, \downarrow depressive mood, \downarrow distress symptoms, \uparrow comfort and \uparrow satisfaction
 - △ Social outcomes include ↑quality of life and more independence
 - \triangle Organizational outcomes include \downarrow length of stay, \downarrow mortality and \downarrow cost

Dysphagia Management

- Dysphagia screening/acute stroke or high-risk^{2,3} populations
- △ Swallow exam^{2,3}
- ▲ Initiated appropriate type of nutrition & liquids³

Top tips for prevention and management of aspiration pneumonia¹

The following provides key points for clinicians to consider to avoid this hospital-acquired complication

Conduct risk assessment

Conduct a comprehensive risk assessment

Identify risk factors such as:

- · Impaired swallow and/or cough reflex
- Strokes or other neuromuscular conditions
- · Cancers affecting cranial nerves or the recurrent laryngeal nerve
- · Poorly controlled nausea and vomiting
- · Excessive alcohol consumption.

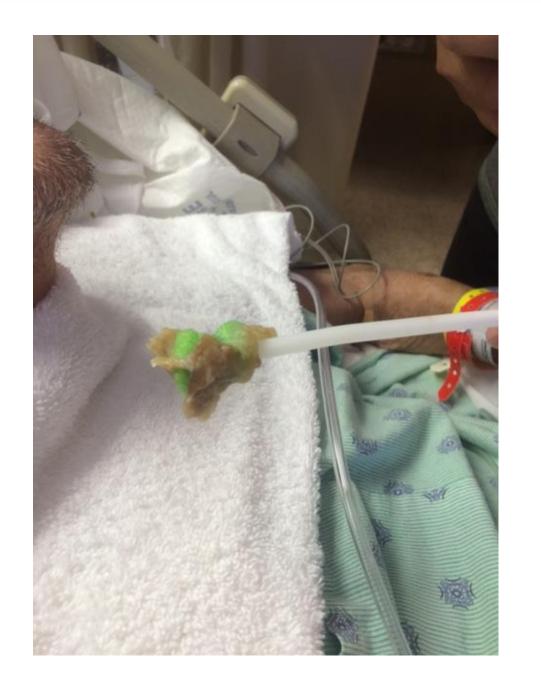
For a patient at risk, develop a prevention plan as part of a comprehensive care plan

Develop prevention plan

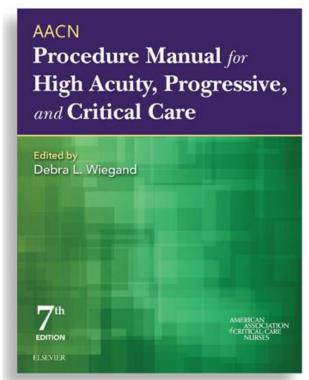
Clinicians, patients and carers develop an individualised, comprehensive prevention plan to prevent aspiration pneumonia:

- · Goals of treatment consistent with the patient's values
- · Any specific nursing requirements, including equipment needs
- · Any allied health interventions required, including equipment needs
- Observations or physical signs to monitor and determine frequency of monitoring, including temperature, respiratory rate and chest auscultation – and document findings in the clinical record
- · Laboratory results to monitor and determine frequency of monitoring
- · If specialist assistance is required.

Deliver prevention plan


Where clinically indicated, deliver aspiration pneumonia prevention strategies, such as:

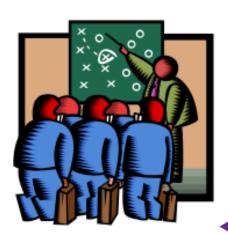
- Speech pathology review
- Drinking thickened fluids
- · Sitting upright when eating
- · Safe swallowing strategies.


Monitor

- Monitor the effectiveness of the aspiration pneumonia prevention strategies, and reassess the patient if aspiration pneumonia occurs
- Review and update the care plan if it is not effective or is causing side effects
- · Engage in reviewing clinical outcomes, identifying gaps and opportunities for improvement.

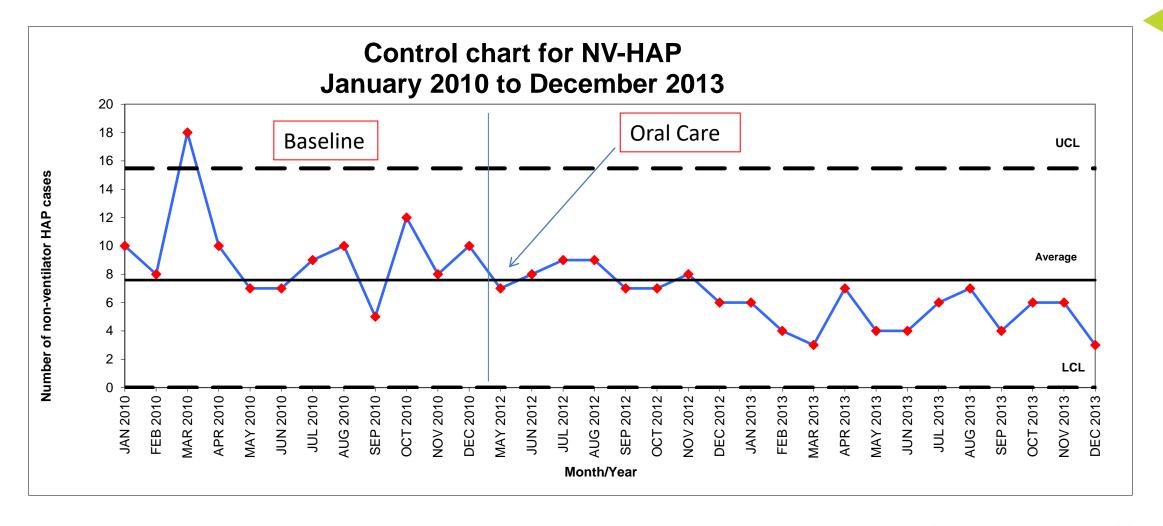
- Australian Commission on safety and quality in healthcare hospital acquired complications information kit, Sydney: ACSQHC
- Mitchell BG, et al. Infect Dis Health. 2019;24(4):229-239
- B. Quinn B, et al. Am J Infect Control. 2020;48(5S):A23-A27.

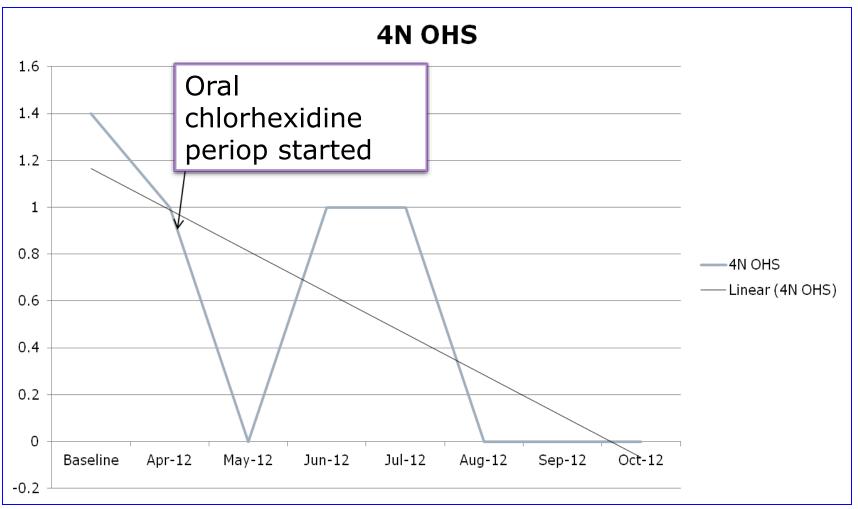
Authors:


Kathleen M Vollman Mary Lou Sole Barbara Quinn

SMCS HAP Prevention Plan

Phase 1: Oral Care


- △ Formation of new quality team: Hospital-Acquired Pneumonia Prevention Initiative (HAPPI)
- New oral care protocol to include non-ventilated patients
- △ New oral care products and equipment for all patients
- △ Staff education and in-services on products
- △ Ongoing monitoring and measurement
 - △ Monthly audits


Protocol – Plain & Simple

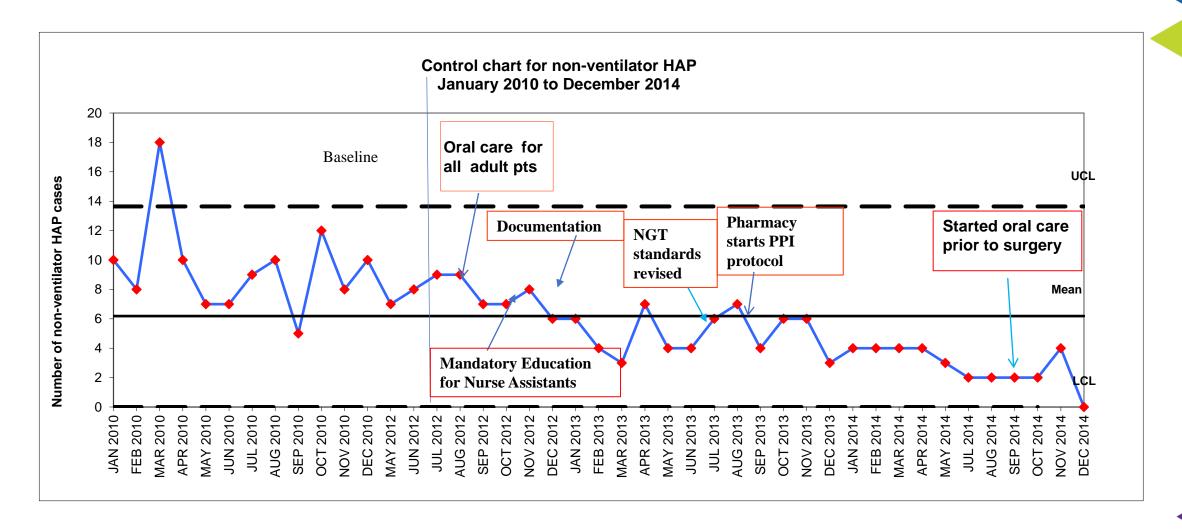
Patient Type	Tools	Procedure	Frequency
Self Care / Assist	 Brush, paste, rinse, moisturizer Soft-bristled toothbrush Toothpaste with dentifrice Antiseptic mouth rinse (alcohol-free) Moisturizer (Petroleum-free) 	Provide tools Brush 1-2 minutes Rinse	4X / day
Dependent / Aspiration Risk	Suction toothbrush kit (4)	Package instructions	4X / day
Dependent / Vent	ICU Suction toothbrush kit (6)CHG for vent & cardiac surgery patients	Package instructions	6X / day
Dentures	Denture cup, brush Cleanser Adhesive	Remove dentures & soak Brush gums, mouth Rinse	4X / day

NV-HAP Incidence 50 % Decrease from Baseline

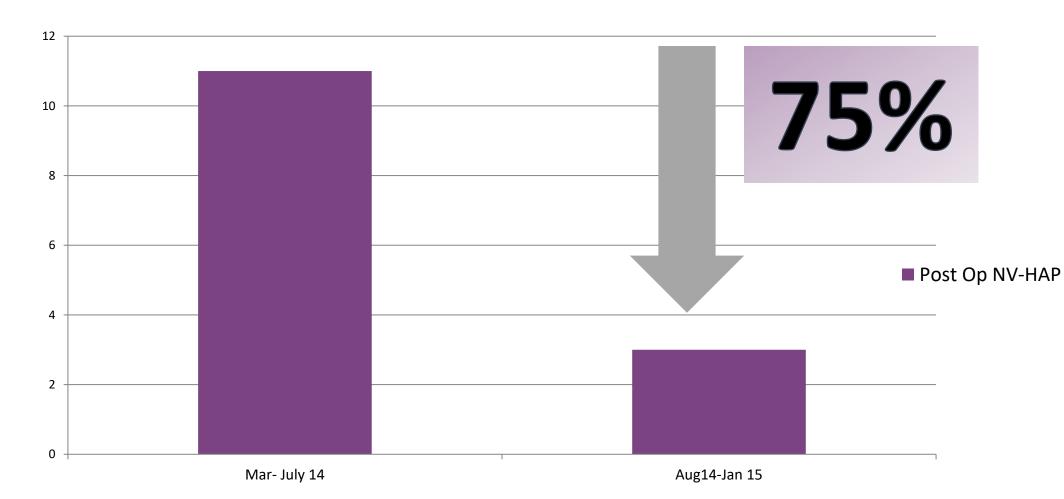
Open Heart Surgery Patients: NV-HAP Reduced 75%

Return on Investment

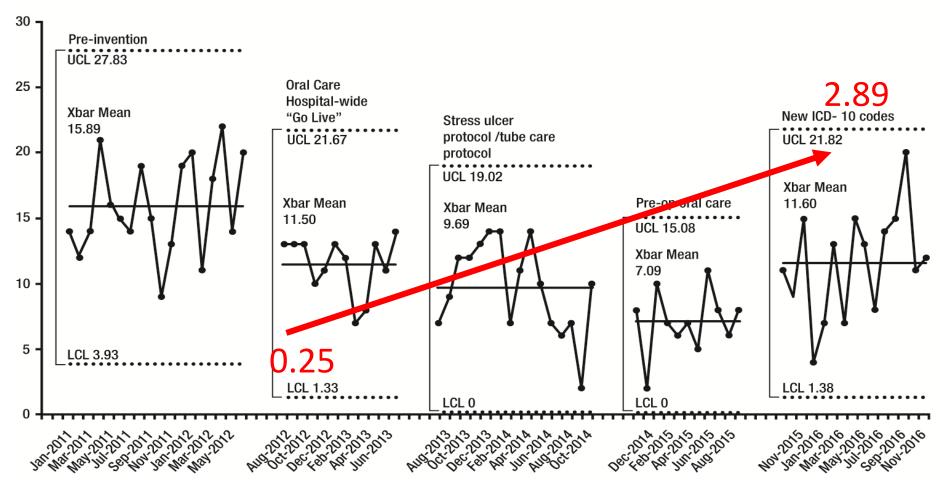
- 60 NV-HAP avoided Jan 1 − Dec. 31 2013
- \$2,400,000 cost avoided
- <u>- 117,600</u> cost increase for supplies
- \$2,282,400 return on investment


8 lives saved

PRICELESS


NV-HAP \downarrow 70% from baseline!

Post-Operative NV-HAP (all adult inpatient surgery) Incidence 6 months Pre-Oral Care vs. 6 Months After

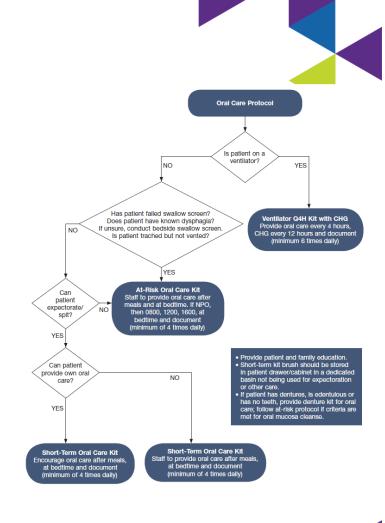


Sustainability Hospital Wide Oral Care from .25 to 2.89 (almost 3x a day)

American Dental Association Approved Oral Care for Acute Care Setting

Oral care type	Tools	Procedure	Frequency
Self/assist (may require setup)	Soft-bristled toothbrush, toothpaste with fluoride, sodium bicarbonate (optional), alcohol-free antiseptic mouth rinse, mouth and lip moisturizer (nonpetroleum-based)	Brush for 1-2 min with toothpaste, rinse with anti- septic; moisturize as needed.	2-4 times/d
Dependent/aspiration risk/nonventilated	Soft-bristled suction toothbrush, cleansing and alcohol-free antiseptic solution, mouth and lip moisturizer (nonpetroleum-based)	Brush with suction for 1-2 minutes using liquid cleansing/antiseptic solution; moisturize as needed.	2-4 times/d
Dependent/ventilated	Soft-bristled or swab suction toothbrush, cleansing and alcohol-free antiseptic solution, mouth and lip moisturizer (nonpetroleum-based)	Brush/swab with suction for 1-2 min using liquid cleansing/antiseptic solution; moisturize as needed. Optional: Brush/swab with suction 1 min with chlorhexidine 0.12%	About every 4 h or 6 times/d Optional: Chlorhexidine 0.12% every 12 h
Dentures or edentulate (not caps)	Denture storage cup, denture brush, denture cleanser adhesive (optional)	Remove and brush/rinse dentures; brush gums and mouth; may soak dentures at night with com- mercial cleanser.	2 times/d Remove dentures while patient is sleeping

Outcomes: From the Beginning to 2014


- △ Between May 2012 and December 2014
- △ Sutter Medical Center avoided 164 cases of NV-HAP:
 - △ \$5.9 million
 - △ 31 lives
 - △ 656-1476 extra days in the hospital

Barb Quinn: Personal Communication 2019

Nurse Driven Oral Care Protocol to Improve NV-HAP

- △ QI project, 650 bed level 1 trauma center
- △ Data measure retrospectively/prospectively using ICD 9 & 10 codes not POA for NV-HAP and VAP
- 5 7 months baseline, 7 months intervention
- ▲ Method:
 - △ Evaluated current practice, the literature and oral care supplies
 - △ Pilot program with new oral care protocols/supplies for self care, assisted oral care and ventilator oral care
 - △ Expanded to whole hospital post pilot area

Results

- △ Staff adherence to protocol 76% (36%-100%)
- **△** NV-HAP
 - △ Baseline: 202 charts/52 NV-HAP's-20 deaths
 - △ Post: 215 charts/26 NV-HAP's (p< 0.0001)-4 deaths

- △ Baseline: 56 VAE's/ 12 VAP's (2.87 per 1000 vent days)
- △ Post: 49 VAE's/3 VAP's (1.26 per 1000 vent days

50% reduction in NV-HAP, avoided 16 deaths & 1.4 million dollars

Figure 2. Patient Education Information Sheet

A Healthy Mouth Is Important for Your Health

Your mouth has more than 700 types of germs, some of which can lead to pneumonia. One of the best ways to reduce the risk of pneumonia in the hospital is by taking care of your mouth. This includes brushing your teeth, using a mouth rinse and making sure your mouth doesn't get too dry.

Hospital-acquired Pneumonia

2ND
nost common infection
that originates
in the hospital in the
United States

Associated with added costs of more than

\$401 per patient Adds
7-9
days to a patient's hospital stay

After you get out of the hospital, it's important to continue to take care of your mouth by brushing your teeth two times a day for two minutes, flossing at least one time a day and visiting your dentist regularly. For more information on oral health, go to: www.deltadentalmi.com

Sparrow Health System and Delta Dental of Michigan have partnerd to make sure you have the tools you need to help prevent pneumonia. They include: a soft toothbrush and/or oral swabs, an antiseptic mouth rinse, a baking soda toothpaste and mouth moisturizer.

At Sparrow, there are three types of oral care kits available:

Short-term Oral Care Kit

Use this kit if you can:

- Swallow without difficulty
- Spit without difficulty

Recommended for use <u>at least four</u> <u>times per day</u>, including after meals and at bedtime.

Ventilator Oral Care Kit

Use this kit if you are on a ventilator, have a breathing tube (endotracheal tube) or a tracheostomy in place.

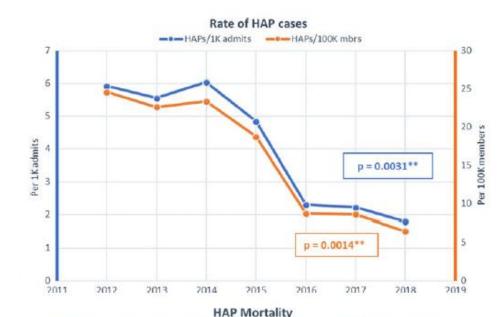
The hospital staff will provide oral care <u>every four hours</u> and use a special chlorhexidine (CHG) mouth rinse every 12 hours.

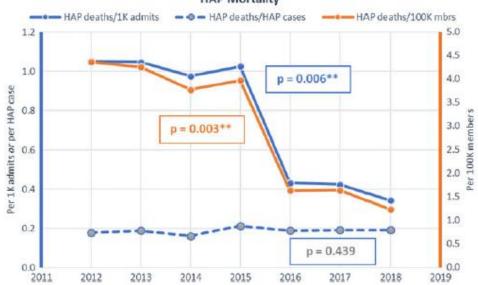
At-risk Oral Care Kit Use this kit if you can:

- Trouble swallowing
- Difficulty spitting
- Recent stroke
- Tracheostomy without a ventilator

Recommended for use <u>at least four times</u> <u>per day,</u> including after meals and at bedtime. If you are unable to eat or drink, the recommended scheduled times are 8 a.m., noon, 4 p.m. and bedtime.

If you or your family are unable to provide your oral care, a staff member will assist you.


For more information, please ask a nurse on any patient unit.

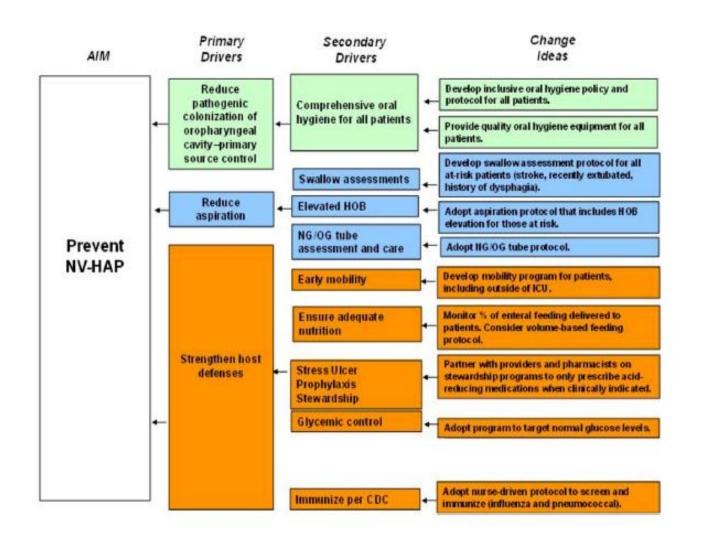

6300 v1

PA 8/15

A Successful Program to \downarrow NVHAP in a Large Hospital System

- 21 hospital system
- Longitudinal observational design
- Intervention
 - Upright for meals, mobilization, swallow evaluation, sedation restrictions, rigorous oral care, feeding tube care (ROUTE)
- Additional results
 - △ Reduction in antibiotic days
 - Carbapenem, quinolone, aminoglycoside & vancomycin
 - △ ↓ Benzodiazepine use

Metrics for NVHAP/Independent Pneumonia


- Percent NVHAP (#NVHAP / #patients X 100)
- ▲ NVHAP/1000 pt days (#NVHAP / # pt days X 1000)
- **△** NVHAP Count
- △ No national benchmark so set internal goal
- \triangle Current literature: 1.22 5.9 / 1000 pt days

Future State--Objective Surveillance Definitions for NV-HAP: Clinical Indicators in the EHR


	Worsening oxygenation	≥3 days of new antibiotics	Temp > 38ºC	White Blood Cell Count <4 or >12	Chest-X-Ray or CT Chest	Respiratory culture
Definition #1	√					
Definition #2	✓	✓				
Definition #3	✓	✓	Either			
Definition #4	✓	✓	✓			
Definition #5	✓	✓	✓	✓		
Definition #6	✓	✓	✓	✓	✓	
Definition #7	\checkmark	√	Either		\checkmark	
Definition #8	✓	✓	✓	✓	✓	✓
Definition #9	✓	√	Either		Either	
Definition #10	√	√	✓ ✓ Either		er	

Identified 0.6 event per 100 admission and associated with a 6 fold higher risk of death compared with matched controls

Comprehensive NV-HAP Prevention

It is not enough to do your best; you must know what to do, and THEN do your best.

~ W. Edwards Deming

Forbid yourself to be deterred by poor odds just because your mind has calculated that the opposition is too great. If it were easy, everyone would do it.