Target Zero: Utilizing a CAUTI Risk Framework to Help Reduce Infections

Kathleen M. Vollman MSN, RN, CCNS, FCCM, FCNS, FAAN Clinical Nurse Specialist / Educator / Consultant ADVANCING NURSING kvollman@comcast.net Northville Michigan www.Vollman.com

Disclosures

A Consultant-Michigan Hospital Association Keystone Center

Subject matter expert on CAUTI, CLABSI, HAPI, Safety culture for AHA

Consultant and speaker bureau

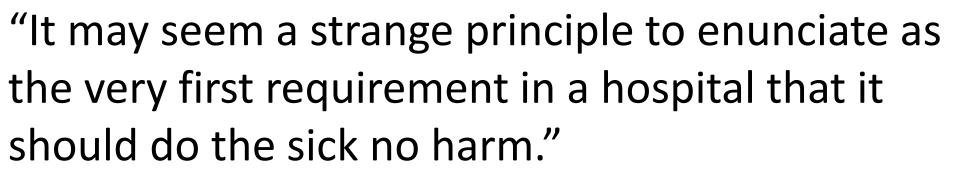
- \triangle Stryker's Sage business
- \triangle LaJolla Pharmaceutical
- \triangle Baxter healthcare
- \triangle Potrero Medical

Objectives

▲ Describe the forces within the current healthcare environment that are targeting zero for device related infections.

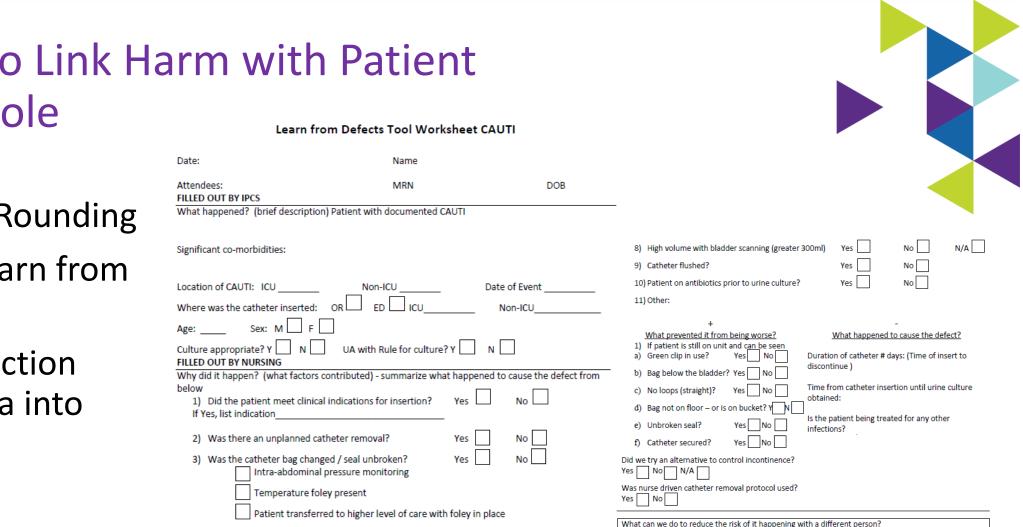
▲ Identify and detail the evidence-based practices that go beyond the guidelines in preventing CAUTI's.

▲ Discuss possible barriers to practice changes and realistic solutions to assist the team in the implementation process.


Polling Question

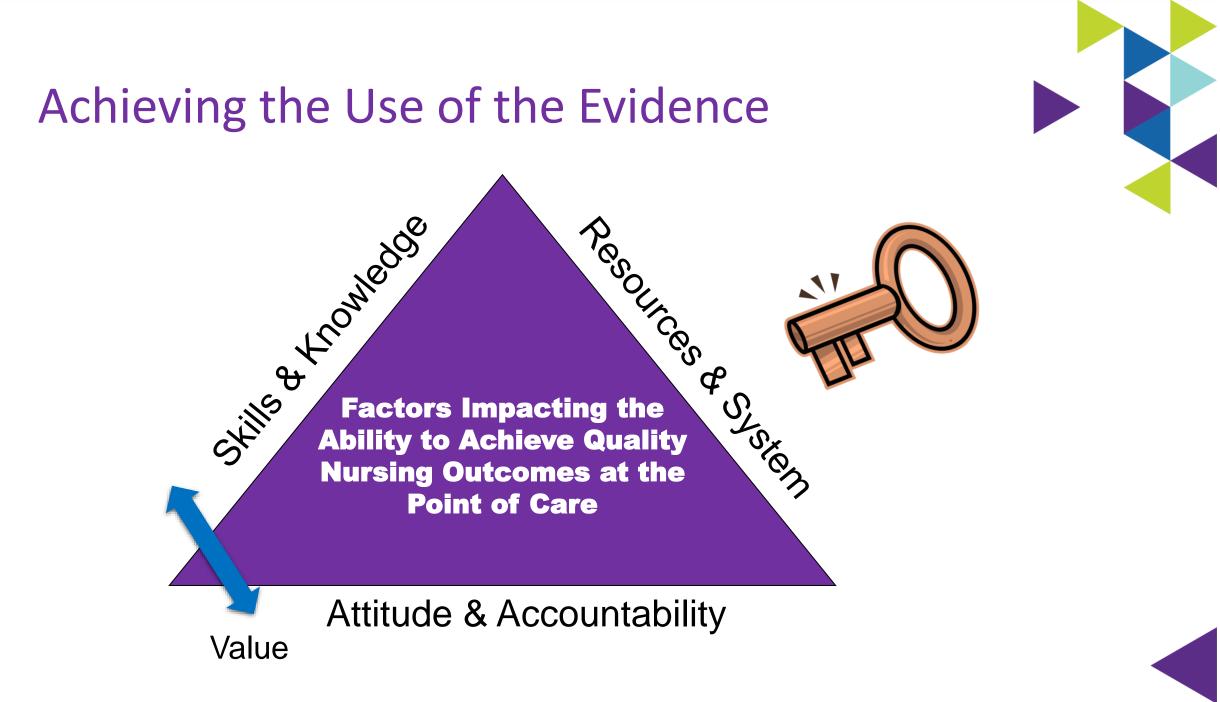
Mhat is your role in your facility?

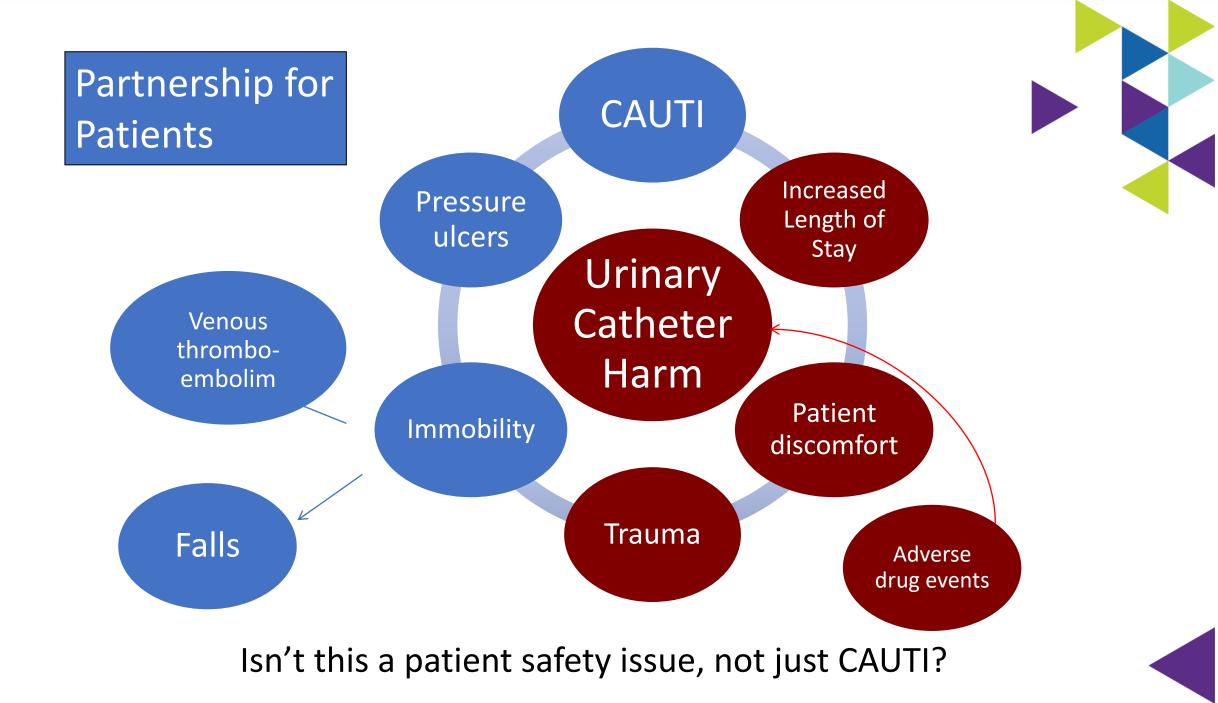
- \triangle Infection preventionist
- \triangle Nurse
- \triangle Physician
- \triangle Public health official
- \triangle Epidemiologist
- \triangle Medical technologist
- \triangle Microbiologist
- \triangle Other



Notes on Hospitals: 1859

- Florence Nightingale





Strategies to Link	Harm	with	Patient
Advocacy Role		Learn fror	n Defects Tool Workshee

- △ Do No Harm Rounding
- ▲Immediate learn from a deficit
- ▲Incorporate action plans and data into daily huddle

				9) Catheter flushed?		Yes		NO
ocation of CAUTI: ICU	Non-ICU	Date	of Event	10) Patient on antibiotic	s prior to urine culture?	Yes		No
Vhere was the catheter inserted:		No	on-ICU	11) Other:				
ge: Sex: M F [culture appropriate? Y N N ILLED OUT BY NURSING Why did it happen? (what factors relow 1) Did the patient meet clinica If Yes, list indication 2) Was there an unplanned ca 3) Was the catheter bag chang Intra-abdominal Temperature fol	contributed) - summarize w Il indications for insertion? theter removal? ged / seal unbroken? pressure monitoring		cause the defect from No No No	+ What prevented it from 1) If patient is still on un a) Green clip in use? b) Bag below the bladd c) No loops (straight)? d) Bag not on floor – or e) Unbroken seal? f) Catheter secured? Did we try an alternative to Yes No N/A Was nurse driven catheter r	hit and can be seen Yes No er? Yes No Yes No is on bucket? Y Yes No Yes No Yes No control incontinence?	Duration of catl discontinue)	heter # days eter insertio	ause the defect? : (Time of insert to n until urine culture for any other
 4) Daily medical necessity doc Critically ill (did pt. red Comfort care Urological / perineal p Stage 3 or greater pres 	red to higher level of care w umented? quire hourly urine output)[Yes		Yes No What can we do to reduce t Action Plan		Responsible Person	rson? Targeted Date	Evaluation Plan – How will we know risk is reduced?
5) Daily Foley care/ peri care p	performed?	Yes	No					
6) Why was culture ordered? Urinary Symptoms	PAN culture (PAN Orde Urine clarity/ odor	r, Date/Time Other) Pt. Febrile	Who Wh	nen	How	Follow up	
7) Fecal incontinence?		Yes	No					

The Why: CAUTI Incidence

- ▲ One of the most common healthcare acquired infections (HAIs)- nearly up to 40% of all HAIs^{1,2}
- ∧ 70% urinary catheter associated HAIs; up to 95% in the intensive care setting²
- ▲ Approximately 20% of hospital patients have urinary catheter at some point in their stay³

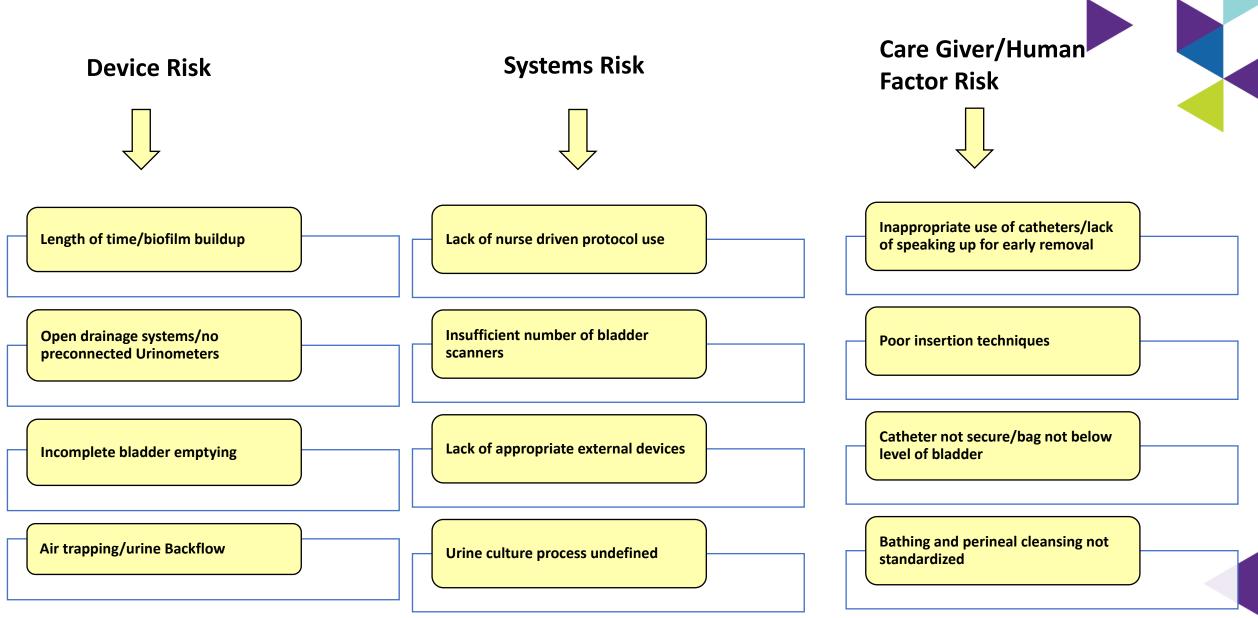
▲ Specific patient impact⁴

- ${\scriptstyle \bigtriangleup}~$ Discomfort r/t to mild signs of infection
- △ Potential urethral trauma
- △ Embarrassment
- △ Pyelonephritis
- △ Urosepsis leading to potential death

- 1. Magill et al NEJM 2014; APIC Guide to Prevention of CAUTI, 2014;
- 2. Chenoweth, C. et al. Infectious Disease Clinics of North America, 2014 28(1), pp.105-119
- 3. Saint, S et al. *Clinical Infectious Diseases*, 2008 46(2), pp.243-250
- Agency for Healthcare Research and Quality (2017). Retrieved from <u>https://www.ahrq.gov/hai/pfp/haccost2017-results.html</u>.

Excess Mortality Estimates for HAC's

	N	Range (RR)	Estimates of RR (95% CI)	Underlying Mortality	Estimates of Excess Mortality (95% CI)
Adverse Drug Events (ADE)	6	0.68–3.09	1.61 (1.14–2.27)	0.020	0.012 (0.003–0.025)
Cathether-Associated Urinary Tract Infections (CAUTI)	4	1.28–1.97	1.50 (1.06–2.11)	0.071	0.036 (0.004–0.079)
Central Line- Associated Bloodstream Infections (CLABSI)	5	1.86–4.88	2.72 (1.81–4.10)	0.086	0.150 (0.070–0.270)
·	very 1000 in-ł	nospital CAUTI	cases, there are	e 36 excess deat	hs ^(0.035–0.070)
Obstetric Adverse Events (OBAE)	—	—	—	—	0.005 (0.003–0.013)
Pressure Ulcers	3	2.42-5.06	3.26 (1.71–6.17)	0.018	0.041 (0.013–0.093)
Surgical Site Infections (SSI)	3	1.75–5.70	3.32 (1.79–6.18)	0.0114	0.026 (0.009–0.059)
Ventilator-Associated Pneumonia (VAP)	10	0.52–4.90	1.48 (0.64–3.42)	0.300	0.140 (-0.110–0.730)
Venous Thromboembolism (VTE)	9	1.01–13.63	3.15 (2.02–4.91)	0.020	0.043 (0.040–0.078)
<i>C. difficile</i> Infections (CDI)	13	1.17–9.60	1.60 (1.38–1.87)	0.073	0.044 (0.028–0.064)

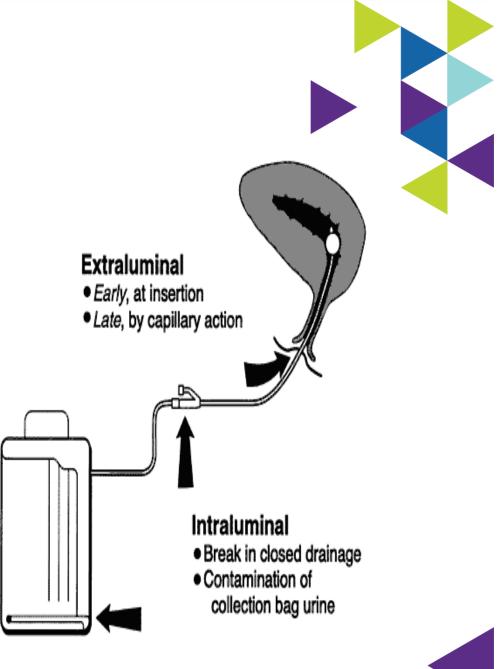

http://www.ahrq.gov/hai/pfp/haccost2017-results.html

Additional Inpatient Costs & Mortality for HAC's: Building the Business Case

	Studies (n)	Range of Estimates	Estimate (95% CI)
Adverse Drug Events (ADE)	2	\$1,277–\$9,062	\$5,746 (-\$3,950–\$15,441)
Catheter-Associated Urinary Tract Infections (CAUTI)	6	\$4,694–\$29,743	\$13,793 (\$5,019–\$22,568)
Central Line-Associated Bloodstream Infections (CLABSI)	7	\$17,896–\$94,879	\$48,108 (\$27,232–\$68,983)
Falls	3	\$2,680–\$15,491	\$6,694 (-\$1,277–\$14,665)
Obstetric Adverse Events (OBAE)	2	\$13–\$1,190	\$602 (-\$578–\$1,782)
Pressure Ulcers	4	\$8,573-\$21,075	\$14,506 (-\$14,506–\$41,326)
Surgical Site Infections (SSI)	5	\$11,778-\$42,177	\$28,219 (\$18,237–\$38,202)
Ventilator-Associated Pneumonia (VAP)	5	\$19,325–\$80,013	\$47,238 (\$21,890–\$72,587)
Venous Thromboembolism (VTE)	4	\$11,011-\$31,687	\$17,367 (\$11,837–\$22,898)
C. difficile Infections (CDI)	9	\$4,157–\$32,394	\$17,260 (\$9,341–\$25,180)

Addressing CAUTIs Through Eliminating Risk

CAUTI Risk Framework

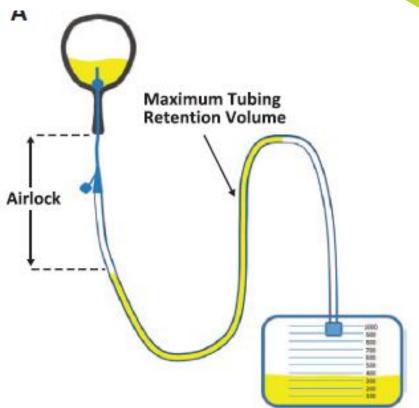


Adapted from APIC 2014 CAUTI Prevention Guidelines

Device Risk: Biofilm Buildup

Source: colonic or perineal flora on hands of personnel

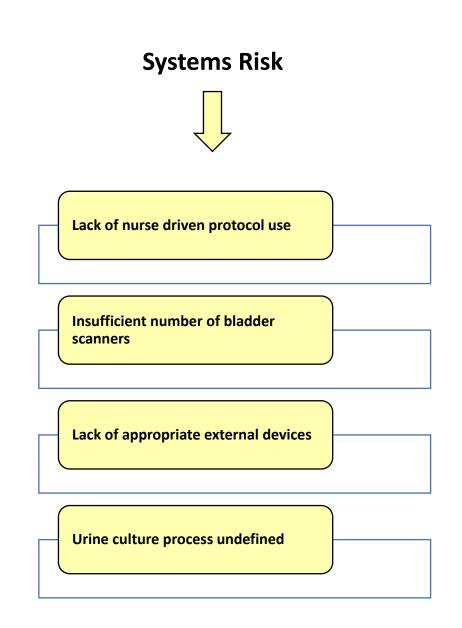
- ▲ Microbes enter the bladder via extraluminal {around the external surface} (proportion = 2/3) or intraluminal {inside the catheter} (1/3)-breaking the seal
- ▲ Daily risk of bacteriuria with catheterization is 3% to 10%; by day 30 = 100%


Device Risk: Incomplete Bladder Emptying

- Current catheter design and placement of the inflation balloon result in the formation of a residual pool of urine in the bladder
- Ideal environment for dense bacterial growth
- Increased risk for infection
- S Falsely low UO-resulting in errors in treatment decisions

Device Risk: Air Trapping (Lock)/Urine Backflow

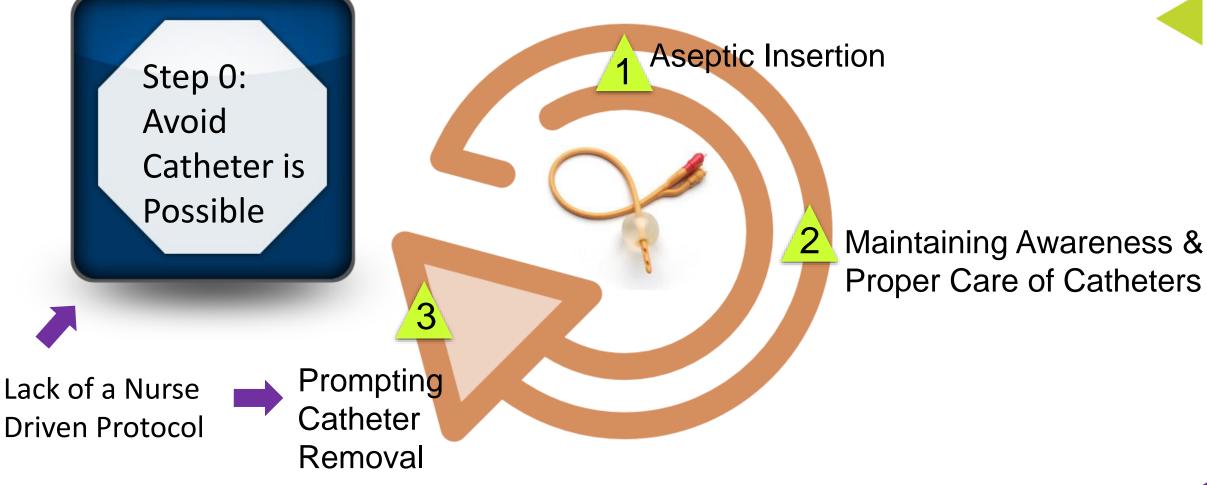
- Presence of urine in dependent loops (94%)
- Dependent loops have been associated with an odds ratio of 2.1 for developing CAUTI.
- Milking required to get urine
- Falsely low UO-resulting in errors in treatment decisions


Danek G, et al. J Wound Ostomy Continence Nurs. 2015 May-Jun;42(3):273-8. Maki DG, et al. Infect Control Hosp Epidemiol. 2000; 21:165 Maki DG, et al. Emerg Infect Dis. 2001;7: 1-6.

The Problem

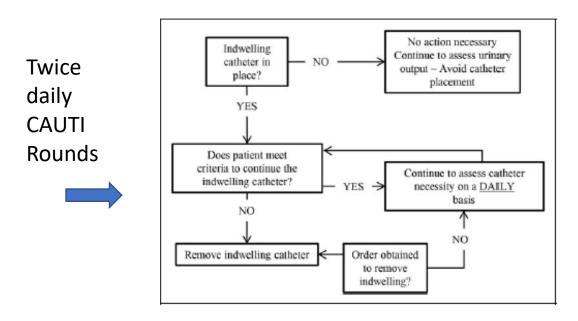
Solution: Active Drain Clearance

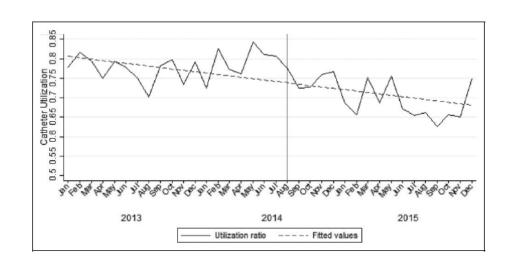
CAUTI Risk Framework



APIC 2014 CAUTI Prevention Guidelines

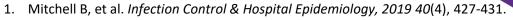
Disrupting the Lifecycle of the Urinary Catheter




www.catheterout.org, (Adapted Meddings. Clin Infect Dis 2011)

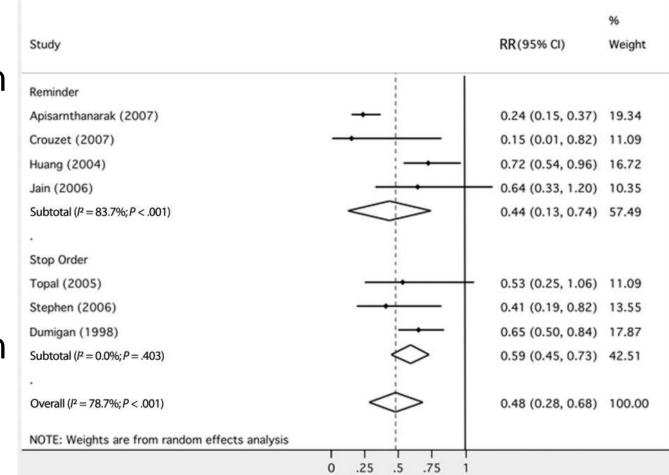
System Risk: Lack of Nurse Driven Protocol

- Retrospective study: 19-month pre and 15-month post intervention
- Implemented a multimodal CAUTI prevention bundle in STICU
 - riangle Nurse driven protocol
 - \triangle Improve maintenance bundle


	Pre	Post	Risk Ratio Post vs Pre (95% Confidence Interval)	P Value
CAUTI rate per 1000 catheter-days (#CAUTIs/#catheter- days)	5.1 (59/11 490)	2.0 (16/8186)	0.38 (0.21-0.65)	.003
Catheter utilization (#catheter-days/#patient-days)	0.78 (11 490/14 732)	0.70 (8186/11 799)	0.89 (0.86-0.91)	<.0001
Urine cultures ordered per 1000 patient-days (#urine cultures/#patient-days)	70 (1035/14 732)	35.8 (293/8186)	0.51 (0.45-0.58)	<.0001

System Risk: Missed Opportunities for Early Removal

	Example Strategy to Promote Early Removal
Physicians ^{1, 2}	 Daily physician assessment of catheter need Computerized order entry system to prompt physicians to remove/reorder catheter if placed in ED or in place >24 hours Orders in place for removal in the OR and/or length of time for catheter to remain in place.
Nurses ^{1,2}	 Nurse Driven protocol to remove all urinary catheters that do not meet criteria Daily review by nurses for catheter indication to make recommendations for removal Nurse-generated daily bedside reminders to encourage physicians to remove unnecessary urinary catheters Nurse-to-nurse communication during transitions (ED, ICU): "Does this patient have a urinary catheter? Why?" If not indicated, ask for catheter to be removed before transfer.


^{2.} Tyson AF, et al J Intensive Care Med. 2018 Jan 1

System Risk: Missed Opportunities for Early Removal

Strategy: Reminder Systems

Reminder 56% reduction

Stop Order 41% reduction

Meddings J et al. Clin Infect Dis, 2010;51:550-560

Engage the Patient & Family

- Educate patients and families about the steps that are being taken to minimize the risk of CAUTI.
- Education: purpose, current indications for use, expected duration of the catheter, why it is important to remove as soon as possible & catheter alternatives
- Catheter removal goal on whiteboard & include in rounds

Health Research & Educational Trust (2017). : 2017. Chicago, IL: Health Research & Educational Trust. Accessed at www.hret-hiin.org

On Transfer

What devices can be removed before the patient is transferred to a different level of care?

Factors That Affect Success of Reminders, Stop Orders and Nurse Driven Protocols

- ☆ Communication patterns and unit culture relative to urinary catheter use¹
- ∧ Nurse comfort with urinary catheter removal protocols ^{1,2}
- ▲ Right urine collection alternatives ^{1,2}
- ▲ Staff knowledge and skills ^{1,2}
- ▲ Respect among nurses and physicians ^{1,2}
- ▲ Ownership by frontline staff, local leadership and quality to review, remind, and reinforce using RCA's or learn from a defect ^{1,2}
- Information technology support for data collection¹
- ▲ Feedback using data on catheter use¹
- ▲ ICU team's recognition of the hazard of urinary catheters^{1,2}

Meddings J, et al. BMJ Qual Saf. 2014 Apr;23:277-89.
 Quinn M, et al Jt Comm J Qual Patient Saf. 2019 Dec 23.

Nurse Driven Removal Protocol: ER/ICU/OR & Floor

Assessment of criteria for insertion

▲ Use of the bedside bladder ultrasound to assess urinary retention (reduce rates by 30-50%)¹

△ If minimal or no urine found in the bladder alternative strategies should be considered prior to catheterization

A Examine alternatives to indwelling catheters

△ Intermittent catheterization several times per day (post –op)

 \triangle External catheters for male patients or female patients without urinary retention or bladder outlet obstruction²

A Prevalence evaluation to determine number of catheters versus the number of catheters that met criteria¹

Saint S, et al. Clin Infect Dis. 2008;46(2):243-250,
 *Saint S, et al. J am Geriatr Sco. 2006;54(7)1055-1061

Intermittent Catheterization Program

If retention is suspected pre or post catheter:

- If no voiding within 4-6 hours of assessment pre insertion or post removal, a bladder scan ultrasound used
- Volume < 500mL, encourage the patient to void by using techniques to stimulate bladder reflex (cold water to abdomen, stroke inner thigh, run water, flush toilet)
- ☆ Continue to assess the patient and repeat the bladder scan in 2 hours if no voiding
- ▲ If the bladder volume > 500mL, and intake is less than 3 L a day-catheterize for residual urine volume rather than place an indwelling catheter
- ▲ If volumes are greater/catheter goes back in 24hrs

STOP CAUTI Sample Policy and Procedure <u>http://www.ucdenver.edu/academics/colleges/medicalschool/departments/</u> <u>medicine/hcpr/cauti/documents/Sample%20Policy%20and%20Procedures.pdf</u> University of Virginia Health System nurse driven intermittent cath program

System Risk : Lack of Appropriate Alternatives

Challenges with Current Male Appropriate Alternatives: External Catheters for the Male Anatomy

> 1 out of every 200 men is born with what's medically known as 'micro-penis'

Buried & Micro Penis

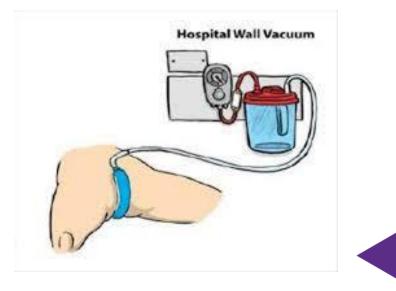
Condom Catheter

Common Problems with Current Male Extenal

▲Most common problems are:

- Skin irritation and maceration
- Difficult to keep the condom from falling off/retraction of the penis or decrease size
- Ischemia and penile obstruction/tightness
- Adherence: required to secure on the shaft & adhesive mechanisms are challenging

- ▲ Adjusts to different sized penises
 △ No sizing chart required
- Prevents backflow with continuous suction
- Diverts urine away from the skin addressing the risk factors of IAD


System Risk : Lack of Appropriate Alternatives for Females

Alternative External Collection Devices for the Female Anatomy

A How do they work?

- △ They are placed between the labia and the urethral opening
- ${\scriptstyle \bigtriangleup}$ The devices are attached to wall suction

Quality Improvement Project

▲18 bed adult SICU

▲10 month pre/post QI study

Utilization of an external female collection device

Daily rounds discussion

 \triangle Inter-professional discussion regarding indications

- Avoid placement
- Early removal

Measurement: CAUTI & SIR rates

Outcomes

Pre/Post Comparison Using Female External Device

	Before	After	
CAUTI Rate	2.55	0.7	
Standardized Infection Ratio (SIR)	1.395	0.381	Ве К. М 2,

Beeson T, Davis C & Vollman C. Presented at the NACNS Meeting in Austin TX, March 2, 2018

Indwelling Catheter Days 🕹 9%

MAGNET

)))

Reducing the usage of urinary catheters is

the leading prevention approach to

decreasing hospital acquired urinary

infections. Without a catheter some

management. The purpose of this evaluation was two-fold: 1) to determine device functionality and to solicit ideas for

critically ill women.

females may have urinary incontinence

leading to sequelae of problems such as

infection, skin injury, pain/discomfort, loss

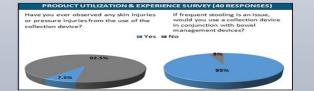
are needed for female urinary incontinence

device improvement 2) to explore workflow impact on nursing practice with use of a

urine management system in acute and

of dignity. Therefore prudent alternatives

An Innovative Technique for Managing Female Urinary Incontinence in Acute and Critically III Women Terrie Beeson MSN RN CCRN ACNS-BC and Carmen Davis MSN RN CCRN CNS-BC


Indiana University Health, University Hospital

Methods

Data collection surveys were developed by content experts and distributed to nursing staff who utilized the device in one of four designated units in a tertiary academic medical center. The first survey was a five item Likert scale evaluation with a narrative section for comments on how to enhance the device wear and utilization. The second survey was a device utilization and experience survey created to examine nursing practice. This included 10 multiple choice items targeting initiation and management of device usa.

Questions	Agree	N/A	Disagree
1. This product helped to manage female urinary incontinence.	100%	0%	0%
2. This product was easy to place on a female patient.	100%	0%	0%
3. This product stayed in place.	100%	0%	0%
4. This product had minimal leakage.	92%	0%	8%

In the first survey, 100% of 13 nurses surveyed agreed that "This product helped to manage female urinary incontinence." Other nursing staff reported that the device was effective in maintaining skin integrity. There were a total of 40 responses for the second survey, utilization and experience. 100% of the nurses documented appropriate urine collection and overall appropriate nanagement of the device.

Conclusions

These findings suggest use of a urine management system as a viable alternative for female urinary incontinence in a broad range of patient sizes and body habitus; thus reducing the need for an urinary catheter. Increased nursing and patient satisfaction resulted as the urine management system was often requested from patients.

References

Prevention. CDC. Urnary Tract Infection (Catheter-Associated Urnary Tract Interction (CAUT) and Ion. Catheter Associated Urnary Tract Tract Interction (CAUT) and Ion. Catheter Associated Urnary Tract (For Disease Control and Prevention, 2017 Gray M. Bedicing Catheter-associated Urnary tract Infection in the ortical United Tractal Catheter associated Urnary tract Infection in the ortical Catheter (CAUT) and Ion. Catheter (CAUT) and Catheter (CAUT) (For W. Beeckman D. Biss DC, et al. Incontinemes-associated demarktis: a comprehensive review and update. J Neurol Octomy Continence Nur-First: Epub Date J. Junkin J., Selekof JL, Prevalence of Incontinemes and associated demarktis: a URL (CAUT) (CAUT) (CAUT) (CAUT) (CAUT) (CAUT) (CAUT) Junkin J., Selekof JL, Prevalence of Incontinemes and associated with Inter-Ory; J. Selekof JL, Prevalence of Incontinemes and associated Urnary CAUT; Epub Date JL. (Sins DZ, Additised over 10. IOSY?) (CAUT) (CAUT

Acknowledgements Indiana University Health, University Hospital, SICU, SPCU, MICU, & MCU starf The preparation of this poster was supported in part by funding provided by Sage Products, LLC.

Beeson, T. & Davis, C. Poster Abstract at the Wound Ostomy Continence Society Meeting in Philadelphia, PA., June 3-6, 2018.

25736

iPCaRe: Evidence-Based Algorithms

Continence Care

J Wound Ostomy Continence Nurs. 2020;47(6):601-618. Published by Lippincott Williams & Wilkins

Interventions Post Catheter Removal (iPCaRe) in the Acute Care Setting

An Evidence- and Consensus-Based Algorithm

Mikel Gray
 Terrie Beeson
 Dea Kent
 Dianne Mackey
 Laurie McNichol
 Donna L. Thompson
 Sandra Engberg

Image retrieved from https://www.wocn.org/blog/the-latest-decision-support-tool-from-wocn/.

Even if you are on the right track, you will get run over if you just sit there.

Will Rogers

Systems Risk: Culturing Process Undefined

Asymptomatic bacteriuria" (ASB) is the condition of having a specified count of bacteria in an appropriately collected urine sample obtained from a person without clinical signs and symptoms of urinary tract infection.

- 1. Overuse of antibiotics that can potentially cause complications in the individual patient, including *C. difficile*
- 1. The provide a structure of the individual of the i
- Falsely inflates an organization's CAUTI rate as bacteremia is unnecessarily treated²
- 4. 23% to 50% antibiotic days for UTI are from ASB 2
 - 1. Health Research & Educational Trust (2017). : 2017. Chicago, IL: Health Research & Educational Trust. Accessed at <u>www.hret-hiin.org</u>
 - 2. Garcia, R & Spitzer ED. American J of Infect. Control. 2017;45(10):1143-1153.

Survey of Doctors and Nurses for Indications to Urine Culture

Order Indication	Physicians	Nurses
Appearance	23%	61%
Odor	42%	74%
Dysuria	54%	35%
Pan culture	38%	45%
UA > 100 WBCs/hpf	58%	43%

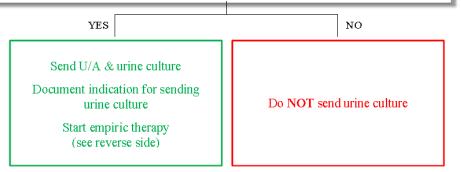
Stratégies to Eliminate System Risk: Recommandations on Urine Culture Management

- ▲ Establish a preculture strategy that directs efforts at how cultures are ordered rather than solely addressing issues after a UA or UC test is finalized:
 - △ Modify the electronic medical record to include appropriate and inappropriate indications for UAs/UCs that address patient symptomology
 - \bigtriangleup Eliminate automatic orders in care plans where appropriate
 - △ Provide education for all clinicians who order UCs with emphasis on appropriate indications for UCs and UTI symptoms in catheterized and non-catheterized patients
 - \bigtriangleup Carefully evaluate patients with fever and order UCs as appropriate
 - △ Reflex urine testing should be considered only if used in conjunction with careful clinical evaluation for signs and symptoms of UT

Stratégies to Eliminate System Risk: Modify Your EMR Ordering Process

Incorporated mandatory selection of standardized indications in EMR for ordering a UC in catheterized patients:

- \triangle Suprapubic pain/tenderness
- \triangle Acute gross hematuria
- \triangle Costovertebral angle tenderness
- \triangle New fever/rigors with clinical assessment negative for more likely etiology
- \triangle Acute alteration of mental status with clinical assessment negative for more likely etiology
- \bigtriangleup Alteration in medical condition with clinical assessment negative for more likely etiology in patient whom fever may not be a reliable sign
- \triangle Increased spasticity or autonomic dysreflexia in patients with altered neurologic sensation


Lowers urine cultures and CAUTI rates

Example: St. Joseph Mercy Hospital Urine Culturing Tool

*SHOULD THIS PATIENT BE EVALUATED FOR A URINARY TRACT INFECTION?

Does the patient have any of the following without alternate explanation?

- 1. Urgency, frequency, dysuria
- 2. Suprapubic pain/tenderness
- 3. Flank pain or tenderness
- 4. New onset delirium
- 5. Fever >38 C/Rigors
- 6. Acute hematuria
- 7. Increased spasticity or autonomic dysreflexia in a spinal cord injury patient
- $8. \geq 2 \ SIRS \ criteria \ (T>38 \ C \ or<35 \ C, \ HR>90, \ RR>20 \ or \ PaCO2<32 \ mmHg, \ WBC>12 \ K/mm^3 \ or<4 \ K/mm^3 \ or>10\% \ bands) \ OR \ shock \ with \ concerns \ for \ sepsis$

*Symptom based screening is not reliable in the following cases: pregnancy, prior to urologic procedures, patients with complex urinary anatomy (i.e., nephrostomy tubes, urinary tract stents, h/o urinary diversion surgery in the past, or renal transplant), patients admitted to the ICU, or neutropenia. Use your clinical judgment for this population. Version date: 9/19/2012

EMPIRIC THERAPY BASED ON CLASSIFICATION OF URINARY TRACT INFECTION (UTI) Empiric choices should take into account recent previous cultures If urine culture is negative & patient was on antibiotics at the time of the culture & patient has symptoms (1-S on the reverse side) it may be appropriate to treat

PATIENT CATEGORY	PREFERRED	2 ND LINE	DURATION
ASYMPTOMATIC BACTERIURIA	Do not treat except in pregnancy, prior to urologic procedures, or neutropenia		
Defined as having NONE of symptoms 1-8 on the reverse side	Candiduria: Change catheter. Do not treat except prior to urologic procedures or in neutropenia		
UNCOMPLICATED LOWER TRACT UTI	TMP/SMX or Nitrofurantoin	Ciprofloxacin or Cephalexin	TMP/SMX x 3 days Nitrofurantoin x 5 days (contraindicated if CrCl <60 mL/min) Ciprofloxacin x 3 days Cephalexin x 7 days
COMPLICATED LOWER TRACT UTI Male, urinary catheter present or rem ov al within the last 48 hrs., GU instrumentation, anatomic abnormality or obstruction, significant com orbidities	Ceftriaxone or TMP/SMX or Cefepime (if risk for resistant gram negatives) or Piperacillin-tazobactam (if risk for resistant gram negahves and enterococcus)	Ciprofloxacin	7 days if prompt resolution 5 days if quinolone used 14 days if delayed response to therapy or bacteremia
SEPSIS WITH UTI, PYELONEPHRITIS, PERINEPHRIC ABSCESS	Ceftriaxone or Cefepime ((if critically ill, septic or recently hospitalized) or Piperacillin-tazobactam (if critically ill, septic or recently hospitalized and concern for enterococcus)	<u>Severe PCN</u> <u>allergy</u> Vancomycin PLUS Aztreonam	Sepsis: 10-14 days Sepsis: 10-14 days Sepsis with gram negative bacteremia: IV antibiotics or step down to oral quinolone if susceptible Sepsis without bacteremia: Change to oral therapy when stable Uncomplicated pyelonephritis (i.e., healthy young female): Ciprofloxacin x 7 days TMP/SMX x 14 days Beta-Jactams x 10-14 days Perinephric abscess: prolonged duration - consult ID and urology

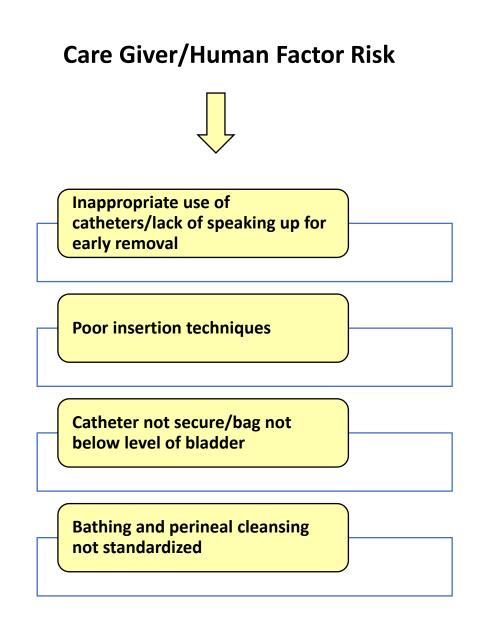
Follow culture results and de-escalate therapy based on final results and sensitivities.

FOR EACH ANTIBIOTIC: DOCUMENT INDICATION AND PLANNED DURATION FOR ALL PATIENTS

Stratégies to Eliminate System Risk: Collection & Transport to Reduce Contamination

> ▲If a catheter placed > 2 weeks, change the catheter before collecting a specimen¹

Contaminated urine cultures lead to additional diagnostic evaluation and inappropriate antibiotic administration > 40%


Klausing BT, et al. American Journal of Infection Control.2016;44:1166-1167

refrigerated.³

▲To overcome logistic barriers: most use urine collection tubes with preservatives.³

- 1. www.apic.org/implementationguides April 2014,
- 2. Lo E, et al. Infect Contr & Hosp Epidemiol. 2014;35(5):464-479
- Garcia, R & Spitzer ED. American J of Infect. Control. 2017;45(10):1143-1153

CAUTI Risk Framework

APIC 2014 CAUTI Prevention Guidelines

Care Giver/Human Factor Risk Core Recommendations

- ▲ Insert catheters only for appropriate indications (1B)
- ▲ Leave catheters in only as long as needed (1B)
- ▲ Ensure that only properly trained persons insert and maintain catheters (1B)
- ▲ Insert catheters using aseptic technique and sterile equipment (1C)
- ▲ Consider use of alternatives (II)
- ▲ Maintain a close drainage system (1B)
- ▲ Secure the system (1B)
- ▲ Maintain unobstructed urine flow (1B)
- ▲ Key the collecting bag below the level of the bladder at all times (1B)
- ▲ Unresolved:
 - Antiseptic or sterile saline for meatal cleaning before insertion

CDC, SHEA, IDSA and NHS: Indications for Placement of Indwelling Catheter

A Perioperative use for selected surgical procedures

A Urine output in critically ill patients

A Management of acute urinary retention and urinary obstruction

Assistance in pressure ulcer healing for incontinent patients

At a patient request to improve comfort(SHEA) or for comfort during end of life care (CDC)

How-to Guide: *Prevent Catheter-Associated Urinary Tract Infections*. Cambridge, MA: Institute for Healthcare Improvement; 2011. (Available at www.ihi.org).

Examples of Indications for Urinary Catheters

	2009 HICPAC Guidelines ¹	American Nurses Association's Streamlined Evidence-Based RN Tool: CAUTI Prevention ²	Ann Arbor Criteria for Appropriate Urinary Catheter Use in Hospitalized Medical Patients ³
Example Indications	 Acute urinary retention/obstruction Perioperative use for selected surgeries To assist with healing of open wounds in incontinent patients End-of-life care Accurate measurement of urinary output in critically ill patients 	 Acute urinary retention/obstruction Perioperative use for selected surgeries To assist with healing of open wounds in incontinent patients End-of-life care Critically ill and need for accurate measurements of I&O (e.g., hourly monitoring) 	 Indwelling catheters are appropriate for measuring and collecting urine only when fluid status or urine CANNOT be assessed by other means. Location in an ICU alone is NOT an appropriate indication. Criteria for 3 catheter types: indwelling, external and intermittent use catheters
Comments	 Appropriate use in critically ill patients has varied interpretations 	 Helpful algorithm to make decisions Based on 2009 Guidelines Use in critically ill patients still ambiguous 	 Provides clarification to the 2009 guidelines on use for specific clinical scenarios Includes ICU Daily Checklist for indwelling catheter use

3. Meddings J. et al. Ann Intern Med. 2015 May 5:162(9 Suppl):S1-34.

safety/infection-prevention/ana-cauti-prevention-tool/

Types Of Treatments Requiring Close UO Monitoring

Bolus fluid resuscitation

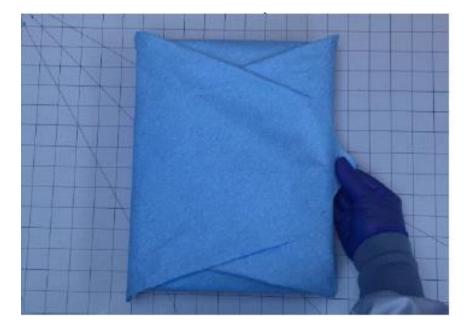
▲Vasopressors

▲Inotropes

▲High dose diuretics

A Hourly urine studies to measure life threatening laboratory abnormalities

Are you responding hourly to the patient's urine output??


Care Giver/Human Factor Risk: Core Recommendations

- ▲ Insert catheters only for appropriate indications (1B)
- ▲ Leave catheters in only as long as needed (1B)
- ▲ Ensure that only properly trained persons insert and maintain catheters (1B)
- ▲ Insert catheters using aseptic technique and sterile equipment (1C)

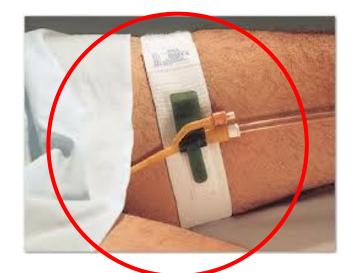
Care Giver/Human Factor Risk: Strategy: Force Function Insertion

Simplified Insertion Checklist for Urinary Catheter

Components of Checklist	Compliant		
	Yes	Yes, after correction	
Hand hygiene before and after procedure			
Sterile gloves, drapes, sponges, aseptic sterile solution for cleaning, and single use packet lubricant used			
Aseptic insertion technique (no contamination during placement)			
Proper securement of urinary catheter post-procedure			
Closed drainage system and bag below patient post-procedure			

Care Giver/Human Factor Risk: Core Recommendations


- ▲ Insert catheters only for appropriate indications (1B)
- ▲ Leave catheters in only as long as needed (1B)
- ▲ Ensure that only properly trained persons insert and maintain catheters (1B)
- ▲ Insert catheters using aseptic technique and sterile equipment (1C)
- ▲ Consider use of alternatives (II)
- ▲ Maintain a close drainage system (1B)
- ▲ Secure the system (1B)
- ▲ Maintain unobstructed urine flow (1B)-device risk factor
- ▲ Key the collecting bag below the level of the bladder at all times (1B) device risk factor
- ▲ Unresolved:
 - Antiseptic or sterile saline for meatal cleaning before insertion



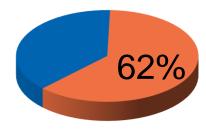
Securement Devices

Care Giver/Human Factor Risk: Core Recommendations

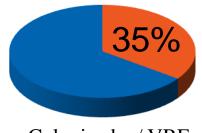
- ▲ Insert catheters only for appropriate indications (1B)
- ▲ Leave catheters in only as long as needed (1B)
- ▲ Ensure that only properly trained persons insert and maintain catheters (1B)
- ▲ Insert catheters using aseptic technique and sterile equipment (1C)
- ▲ Consider use of alternatives (II)
- ▲ Maintain a close drainage system (1B)
- ▲ Secure the system (1B)
- ▲ Maintain unobstructed urine flow (1B)-device risk factor
- ▲ Key the collecting bag below the level of the bladder at all times (1B) device risk factor
- ▲ Unresolved:
 - Antiseptic or sterile saline for meatal cleaning before insertion

Care Giver/Human Factor Risk:

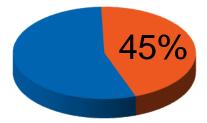
Bathing & Perineal Cleansing Not Standardized

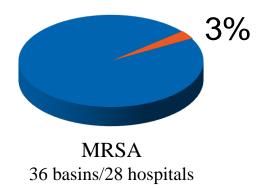


How We Bathe May Impact CAUTI's


Bath Basins Potential Source of Infection

Large multi-center study evaluates presence of multi-drug resistant organisms

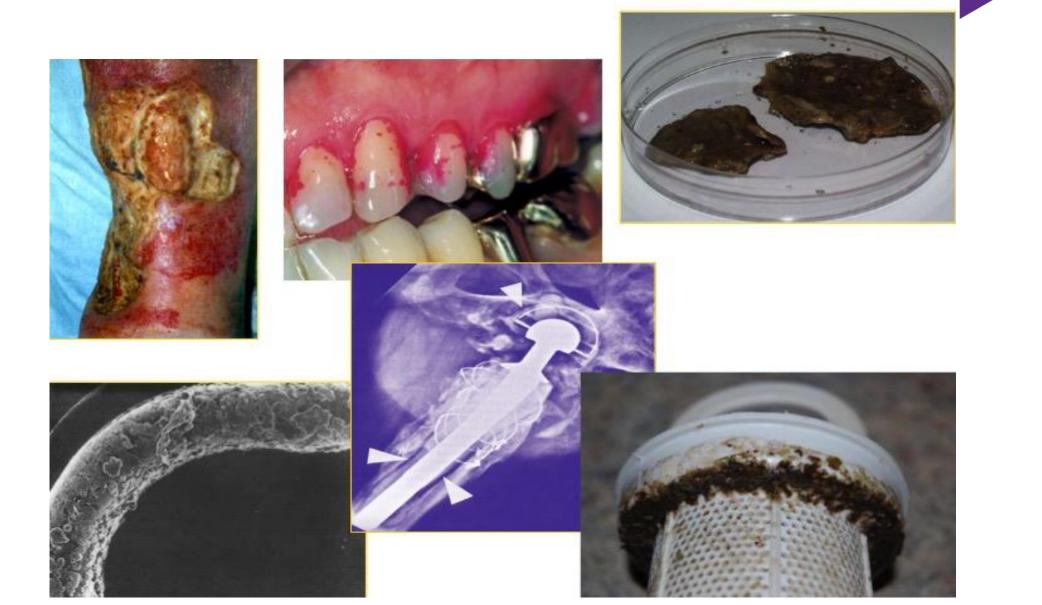

Total hospitals: 88 Total basins: 1,103


Contaminated 686 basins/88 Hospital

Colonized w/ VRE 385 basins/80 hospitals

Gram negative bacilli 495 basins/86 hospitals

Mechanisms of Contamination


- Skin flora¹
 Multiple-use basins^{2,3,4}
 - Incontinence cleansing
 - Emesis
 - Product storage
- ▲Bacterial biofilm from tap water¹⁻⁴

- 1. Larson EL, et al. *J Clin Microbiol*. 1986;23(3):604-608
- 2. Johnson D, et al. Am J Crit Care, 2009;18(1):31-38, 41
- 3. Marchaim D, et al. Am J Infect Control. 2012;40(6):562-564.
- 4. Shannon RJ, et al. J Health Care Safety Compliance Infect Control. 1999;3:180-

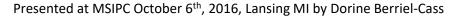
Biofilms are Ubiquitous

Water Source

Hospital Tap Water

- \Lambda Bacterial biofilm
- ▲ Most overlooked source for pathogens²
- ▲ 29 studies demonstrate an association with HAIs and outbreaks²
- ▲ Transmission:¹⁻³
 - \triangle Drinking
 - \triangle Bathing
 - \triangle Rinsing items
 - △Contaminated environmental surfaces

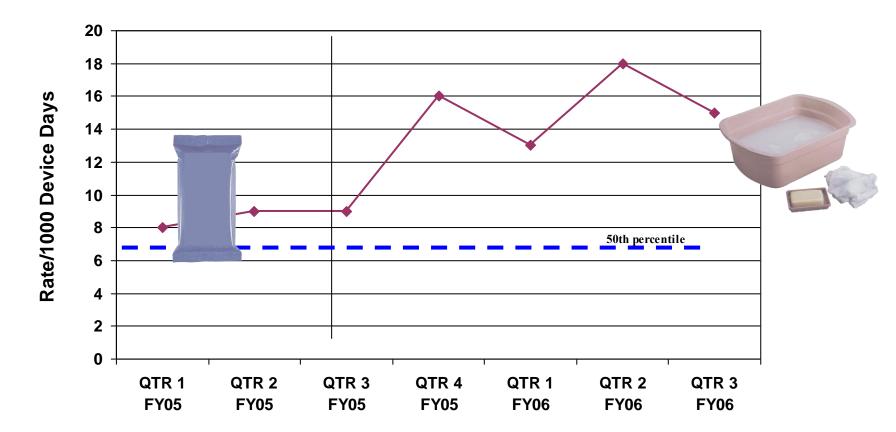
▲Immunocompromised patients at greatest risk¹



- 1. Anaissie EJ, et al. Arch Intern Med. 2002;162(13):1483-1492.
- 2. Cervia JS, et al. Arch Intern Med, 2007;167:92-93,
- 3. Trautmann M, et al. Am J of Infect Control, 2005;33(5):S41-S49,

Understanding Water

All water except for sterile water and filtered water is contaminated with microbes (e.g., potable water, tap water, showers, and ice)¹


- In healthy persons, contact or ingestion of such water rarely leads to infection¹
- A However, contact or ingestion of such water may cause infection in immunocompromised persons or when applied to non-intact skin¹
- ▲ Transmission of these pathogens from a water reservoir may occur by direct and indirect contact, ingestion and aspiration of contaminated water, or inhalation of aerosols²

2. *Decker BK, et al. Opin Infect Dis 2013; 26:345-51.

Impact on UTI with Basin Bathing

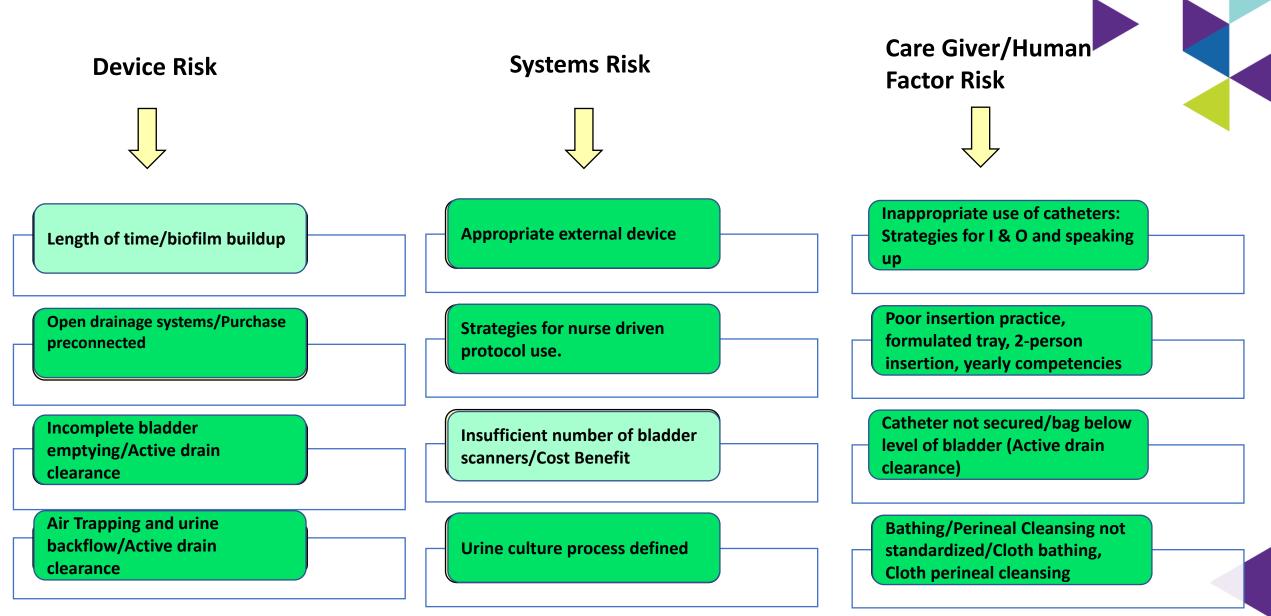
UTI Rate- Removal of Prepackaged Bath Product QTR 3 FY05

McGuckin M, et al. AJIC, 2008;36:59-62

The Effect of Bathing with Basin and Water and UTI Rate, LOS and Costs

Unit Census: 14				
Phases	Product Cost	No. of UTI	Median⁴ LOS 17 Days	Median ⁴ Cost (4857.00)
I- Pre-Packaged Bathing Washcloths (9 months)	\$10,530 ¹ (\$3.00)	25	175	\$117,175
II- Basin/Water (9 months)	\$3,510 ² (\$1.00)	48	336	\$224,916
III- Additional Product Cost, UTI, LOS, COSTS	\$7,020	23 ³	151	\$107,741

¹Based on 3 packages of 8 towels each ²Based on product cost of towels, soap, and basin³ Difference between phase I pre-package/phase II basin water⁴



Cleansing of Patients with Indwelling Catheter

- Antiseptic cleaning of the meatal area (CHG or Povidone-iodine) before and during catheter use compared to soap and water or saline may reduce the risk of CAUTIS. (OR=0.65, 95%CI 0.42 to .99; p=0.047)
- Indwelling catheter care should occur with the daily bath (basinless bathing), as a separate procedure using clean technique
- A There is no evidence to support 2x a day indwelling catheter care

study	OR (95% CI)	Events, Treatment	Events, Cantral	% Weigh
Povidone-iodine vs routine meatal care	-	U.L.		
Burke et al., 1981a	1.35 (0.76, 2.39	32/200	24/194	8.87
Classen et al., 1991b	0.95 (0.45, 2.00	14/300	15/306	5.67
Subtatal (1-squared = 0.0%, p = 0.464)	1.19 (0.75, 1.87		39/500	14.54
Samuel (Foderia) - 0016, p - 0969)	1.15(d.rd, 1.6r	40.000	33,000	C PROPERTY
Green soap & water vs routine meatal care				
Burke et al., 1981b	1.59 (0.85, 2.96	28/229	18/223	7.69
	1.59 (0.85, 2.96	28/229	18/223	7.69
Antibacterial vs routine meatal care				
Burke et al., 1983	0.87 (0.41, 1.82	14/214	16/214	5.70
Classen et al., 1991a	0.64 (0.38, 1.09		37/364	10.15
Huth et al., 1992	0.85 (0.54, 1.34		48/364	12.51
Lynch et al., 1991	0.48 (0.16, 1.43	6/50	11/50	2.89
Subtotal (1-squared = 0.0%, p = 0.706)	0.75 (0.55, 1.01	84/979	112/992	31.25
Chlorhexidine vs tap water	1			
Carapeti et al., 1996	0.85 (0.30, 2.40	7/74	9/82	3.11
			18/219	6.88
Webster et al., 2001	1.13 (0.58, 2.21			
Subtotal (I-squared = 0.0%, p = 0.645)	1.04 (0.59, 1.83	27/291	27/301	9.99
Povidone-iodine vs soap and water				
Duffy et al., 1995	1.32 (0.54, 3.21	26/42	21/38	4.13
Jeong et al., 2010	0.57 (0.18, 1.80	9/28	10/22	2.56
King et al., 1992	0.69 (0.21, 2.28		15/23	2.42
Subtatal (1-squared = 0.0%, p = 0.476)	0.88 (0.48, 1.62		46/83	9.11
Chlorhexidine vs saline				
Fasugba et al., 2019	0.40 (0.21, 0.74	16/945	29/697	7.79
	0.40 (0.21, 0.74		29/697	7.79
Pavidone-iodine vs saline				
Ibrahim and Rashid, 2002	1.13 (0.53, 2.41	19/64	18/66	5.47
	1.13 (0.53, 2.41	19/64	18/66	5.47
Povidane-iodine vs sterile water				
Kara and Ozyurek, 2017	0.49 (0.13, 1.88	4/33	7/32	1.93
			5/16	1.07
Nugraha et al., 2019	0.31 (0.05, 1.94			
Subtotal (1-squared = 0.0%, p = 0.697)	0.42 (0.14, 1.24	6/49	12/48	3.00
Povidone-iodine vs tap water				
Nasiriani et al., 2009	0.80 (0.22, 2.97	5/30	6/30	2.01
	0.80 (0.22, 2.97	5/30	6/30	2.01
Chlorhexidine vs nonantimicrobial cloths				
Noto et al., 2015	0.67 (0.39, 1.18	20/4488	32/4852	9.14
Total States Add Tot				
	0.67 (0.39, 1.18	20/4488	32/4852	9.14
Overall (1-squared = 13.2%, p = 0.296)	0.84 (0.69, 1.02	299/7068	339/7792	100.00
NOTE: Weights are from random effects analysis				
	1 19.6			
.0509		1		
.0509	Mitchell B. et al BMJ open, 2021;1	1		

CAUTI Risk Framework

APIC 2014 CAUTI Prevention Guidelines

WHEN WOULD NOW BE A GOOD TIME TO DO THIS?

It is not enough to do your best; you must know what to do, and THEN do your best. ~ W. Edwards Deming Forbid yourself to be deterred by poor odds just because your mind has calculated that the opposition is too great. If it were easy, everyone would do it.

Kathleen M. Vollman MSN, RN, CCNS, FCCM, FCNS, FAAN Clinical Nurse Specialist / Educator / Consultant ADVANCING NURSING kvollman@comcast.net Northville Michigan www.Vollman.com HAI Prevention courses by Kathleen Vollman

https://www.medbridgeeducation.com /advancing-nursing

