The Impact of Patient Hygiene on Hospital Acquired Infections

26043B ©ADVANCING NURSING LLC 2021

Kathleen M. Vollman MSN, RN, CCNS, FCCM, FCNS, FAAN Clinical Nurse Specialist / Educator / Consultant ADVANCING NURSING kvollman@comcast.net Northville, Michigan www.vollman.com

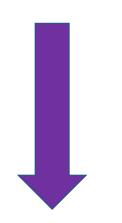

Disclosures

- Consultant-Michigan Hospital Association Keystone Center
- Subject matter expert on CAUTI, CLABSI, HAPI, Safety culture for AHA
- ▲ Consultant and speaker bureau
 - △ Stryker's Sage business
 - △ LaJolla Pharmaceutical
 - △ Baxter healthcare
 - △ Potrero Medical

Objectives

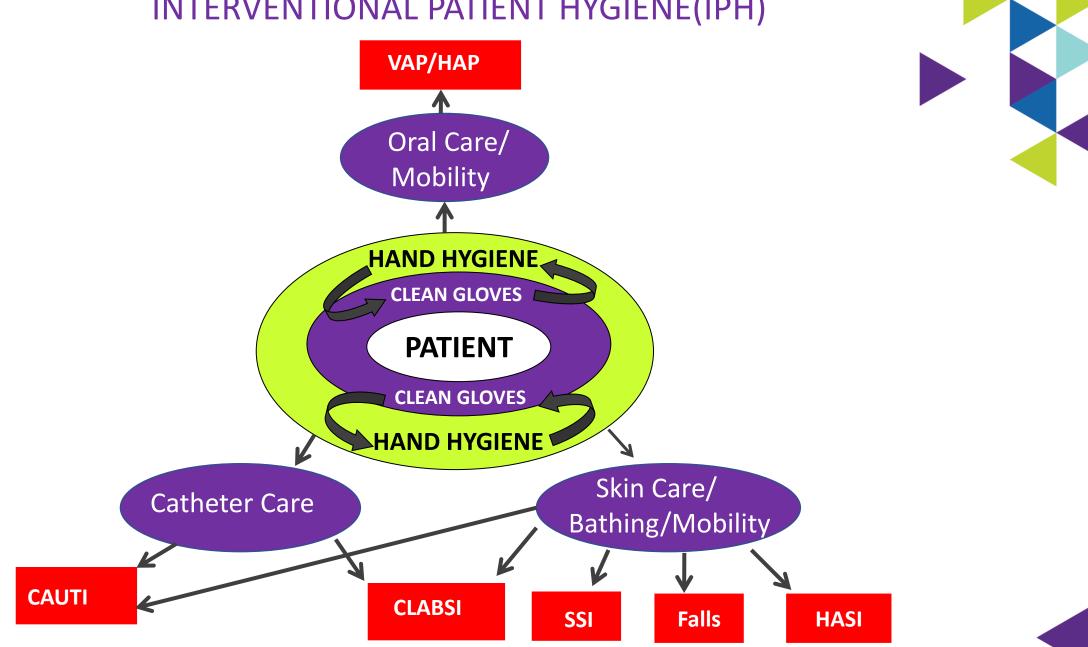
- Describe the forces within the current healthcare environment that are targeting reduce bacterial load and HAI's
- Identify and detail the evidence-based practices for bathing critically ill patients
- Discuss possible barriers to practice changes and realistic solutions to assist the team in the implementation process

Notes on Hospitals: 1859


"It may seem a strange principle to enunciate as the very first requirement in a hospital that it should do the sick no harm."

- Florence Nightingale

Protect The Patient From Bad Things Happening on Your Watch


Implement Interventional Patient Hygiene

Interventional Patient Hygiene

- A Hygiene...the science and practice of the establishment and maintenance of health
- Interventional Patient Hygiene....nursing action plan directly focused on fortifying the patient's host defense through proactive use of evidence-based hygiene care strategies

Hand Comprehens Hygiene Oral Care P	Dormatitie	Bathing & Assessment	Pressure Injury Risk Reduction	Catheter Care
--	------------	-------------------------	--------------------------------------	------------------

INTERVENTIONAL PATIENT HYGIENE(IPH)

Vollman KM. Intensive Crit Care Nurs, 2013;22(4): 152-154

Achieving the Use of the Evidence GKIIIS thomedoe Resources

e cystern **Factors Impacting the Ability to Achieve Quality Nursing Outcomes at the Point of Care**

Attitude & Accountability

Value

Vollman KM. Intensive Crit Care Nurs, 2013;22(4): 152-154

Missed Nursing Care

- "Any aspect of required patient care that is omitted (either in part or whole) or significantly delayed."
- ▲ A predictor of patient outcomes
- Measures the process of nursing care

Hospital Variation in Missed Nursing Care

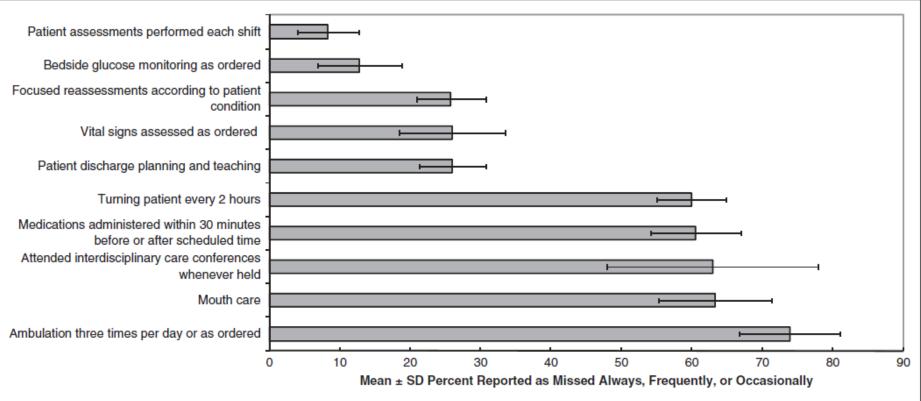
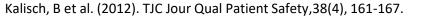
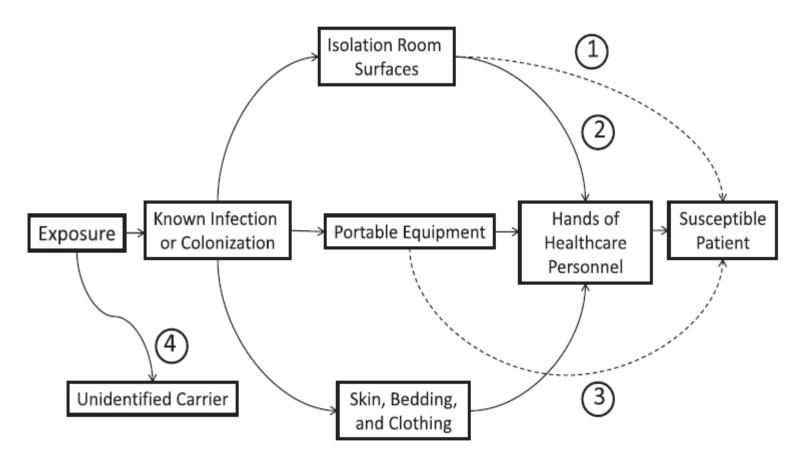
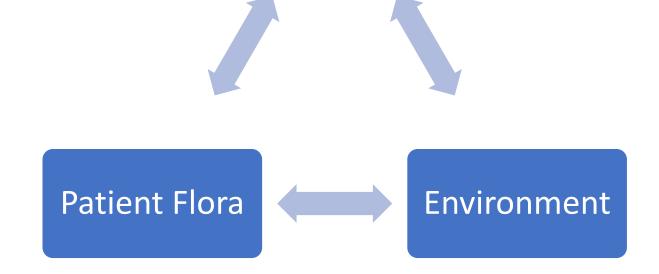



Figure 2. Elements of care most and least frequently missed. The solid bars represent the means across all 10 hospitals, and the range lines indicate the standard deviations.


Patient Perceptions of Missed Nursing Care

	Fully Reportable	Partially Reportable	Not Reportable Patient assessment Surveillance IV site care
Frequently Missed	Mouth careListeningBeing kept informed	 Ambulation Discharge planning Patient education 	
Sometimes Missed	 Response to call lights Response to alarms Meal assistance Pain medication and follow-up 	 Medication administration Repositioning 	
Rarely Missed	■ Bathing	Vital signsHand washing	


Common Routes of Transmission

C.J. Donskey / American Journal of Infection Control 41 (2013) \$12-\$19

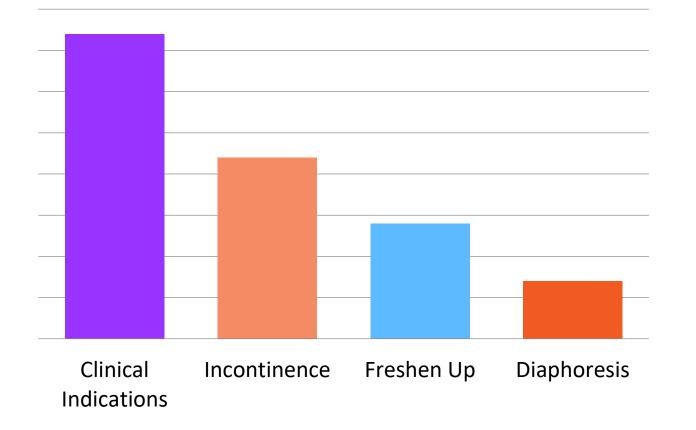
3 Main Vectors of Infection

Hands of HCW

Weinstein T.A. Am J Med 1991: 91(Suppl):179S-184S

Impact from the Vectors of Infection

- ▲ Patients' endogenous flora (40% 60%)
- Cross-infection via the hands of healthcare personnel (HCP; 20% 40%)
- ▲ Antibiotic-driven changes in flora (20% 25%)
- ▲ Contamination of the environment (20%).


Vertical vs. Horizontal

- Vertical approach refers to a narrowbased program focusing on a single pathogen (selective of the specific MDRO)
 - △ AST to identify carriers
 - Implementation of measures aimed at preventing transmission from carriers to other patients
 - Isolation
 - Hand hygiene

- A Horizontal approach to infection prevention and control measures refers to broad-based approaches attempting reduction of all infections due to all pathogens
 - \triangle No screening
 - \triangle CHG bathing
 - \triangle Universal nasal coverage
 - \triangle No isolation
 - △ Limit lines/tubes
 - \triangle Hand hygiene

Reasons for Bathing

Used with Permission Advancing Nursing LLC Copyright © 2013 AACN and Advancing Nursing LLC

Coyer FM, et al. Aust Crit Care. 2011;24(3):198-209.

Timing of the Bath

40% baths occur 2400 – 0600

- ▲ Timing for bathing varies globally
- Consider patient need for sleep and energy reserves Avoid:
 - △ Nurse preference
 - △ Organizational factors
 - \triangle Unit norms

Activities That Increase VO₂

Dressing change	10%
\Lambda Agitation	18%
\Lambda Bath	23%
\Lambda Suctioning	27%
Increased work of breathing	40%
\Lambda Weigh on sling scale	36%
\Lambda Position change	31%
\Lambda Linen change – occupied bed	22%
\Lambda Chest physiotherapy	35%

Patients At Risk

▲ Multi-Drug Resistant Organisms

- △ Immunodeficiencies
- \triangle Breaks in skin integrity related to invasive devices
- \triangle Open wounds
- \triangle Co-morbidities
- \triangle Hand transmission
- \triangle Equipment contamination/ Hospital environment
- Damaging the Natural Barriers to Infection...the Skin
 - △ Bathing techniques
 - △ Soaps
 - $\bigtriangleup \quad \text{Wash cloths}$

Bonten MJM. Am J Respir Crit Care Med. 2011;184:991-993 Weber DS, et al. Am J of Infect control, 2010;38:S25-33. Perkins KM, et al. Infect Control & Hosp Epidemiology 2019;40:621-626

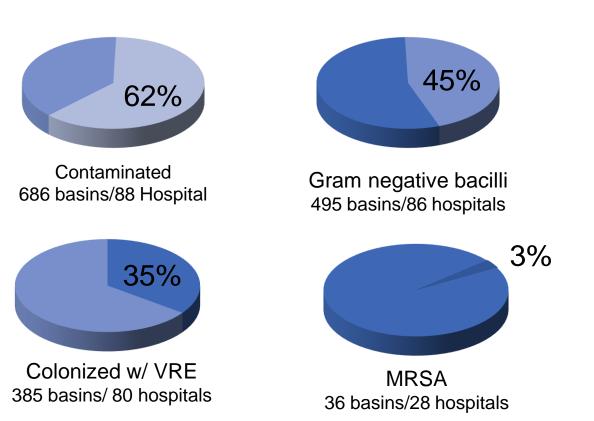
Optimal Hygiene

- ▲ pH balanced (4-6.8)
 - ightarrow Stable pH discourages colonization of bacteria & ψ risk of infection
 - △ Bar soaps may harbor pathogenic bacteria
- Excessive washing/use of soap compromises the water holding capacity of the skin
- A Non-drying, lotion applied
- Multiple steps can lead to large process variation

Voegel D. J WOCN, 2008;35(1):84-90 Byers P, et al. WOCN. 1995; 22:187-192. Hill M. Skin Disorders. St Louis: Mosby; 1994. Fiers SA. Ostomy Wound Managment.1996; 42:32-40. Kabara JJ. et. al. J Environ Pathol Toxicol Oncol. 1984;5:1-14

Traditional Bathing

Why are there so many bugs in here?


Soap and water basin bath was an independent predictor for the development of a CLABSI

dent Bleasdale SC, e tal. Arch Intern Med. 2007;167(19):2073-2079

Bath Basins: Potential Source of Infection

Large multi-center study evaluates presence of multi-drug resistant organisms

Total hospitals:88Total basins:1,103

Mechanisms of Contamination

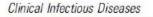
- \Lambda Skin flora
- ▲ Multiple-use basins
 - \triangle Incontinence cleansing
 - \triangle Emesis
 - \triangle Product storage
- A Bacterial biofilm from tap water

Shannon RJ, et al. J Health Care Safety Compliance Infect Control. 1999;3:180-184. Larson EL, et al. J Clin Microbiol. 1986;23(3):604-608. Johnson D, et al. Am J Crit Care, 2009;18(1):31-38, 41. Marchaim D, et al. Am J Infect Control. 2012;40(6):562-564. Used with Permission Advancing Nursing LLC

Used with Permission Advancing Nursing LLC Copyright © 2013 AACN and Advancing Nursing LLC

Biofilms are Ubiquitous

Pathogens 2015, 4, 373-386; doi:10.3390/pathogens4020373



Review

Opportunistic Premise Plumbing Pathogens: Increasingly Important Pathogens in Drinking Water

Joseph O. Falkinham, III 1,*, Amy Pruden 2 and Marc Edwards 2

INVITED ARTICLE

HEALTHCARE EPIDEMIOLOGY: Robert A. Weinstein, Section Editor

Healthcare Outbreaks Associated With a Water Reservoir and Infection Prevention Strategies

Hajime Kanamori,^{1,2} David J. Weber,^{1,2} and William A. Rutala^{1,2}

¹Division of Infectious Diseases, University of North Carolina School of Medicine, and ²Hospital Epidemiology, University of North Carolina Health Care, Chapel Hill

meaning Local News [Northwest] muget bound

Operating-room machines test positive for Legionella at UW Medicine

Originally published September 19, 2016 at 2:19 pm Updated September 19, 2016 at 7:31 pm

Understanding Water

- ▲ All water with the exception of sterile water and filtered water is contaminated with microbes (eg, potable water, tap water, showers, and ice).
- △ In healthy persons, contact or ingestion of such water rarely leads to infection.
- A However, contact or ingestion of such water may cause infection in immunocompromised persons or when applied to non-intact skin
- A Transmission of these pathogens from a water reservoir may occur by direct and indirect contact, ingestion and aspiration of contaminated water, or inhalation of aerosols*
- Compared sink & water based care activities to non sink and non water based care activities on GNB colonization in ICU. Found rate dropped from 26.1 to 21.6 colonization pre 1000 ICU days. Greater reduction with longer ICU LOS's

Waterborne Infection

Hospital Tap Water

- A Bacterial biofilm
- Most overlooked source for pathogens
- A 29 studies demonstrate an association with HAIs and outbreaks
- ▲ Transmission:

 \triangle Drinking

 \triangle Sinks

 \triangle Bathing

 \bigtriangleup Rinsing items

- \bigtriangleup Contaminated environmental surfaces
- \bigtriangleup Contaminated ice machines
- Immunocompromised patients at greatest risk

Anaissie EJ, et al. *Arch Intern Med*. 2002;162(13):1483-1492. Cervia JS, et al. Arch Intern Med, 2007;167:92-93 Trautmann M, et al. Am J of Infect Control, 2005;33(5):S41-S49, <u>https://www.pinterest.com/pin/332914597437828576/?I=t</u> Kanwar A, et al. Am J Infect Control. 2017;45(11):1273-1275.

Reducing UTI's Through Basinless Bathing

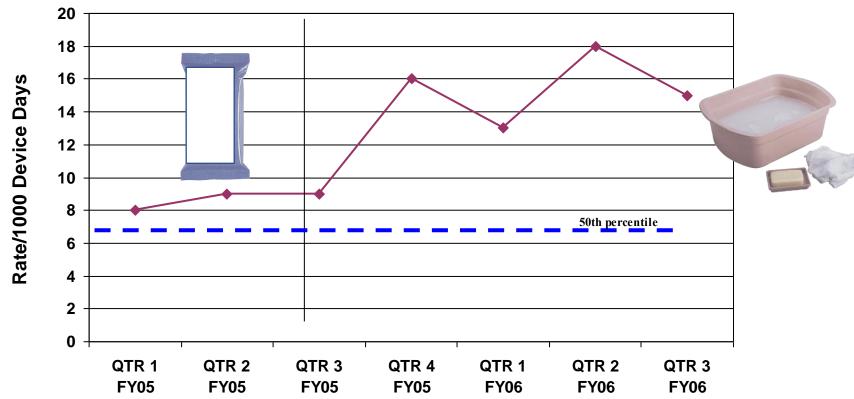

6.0 **Pre-Study Period** Washout Study Period 5.0 电空花 4.367 89% Reduction 3.86 4.03,03 3.0 2.18 2.0 1.00.0 Jan 09 Feb.09 Har 09 Apr 09 Hay 09 Sep 08 Oct 08 Nov 08 Dec 08 0d999 Nov OR: Dec 09 Jan 10 Jun 09 Jul OS Feb 10 Apr 10 Robell 100 Foley days 4,37 4.02 3.22 4.77 3.88 ñ. 2.03 2.18 ÷. Rate/1000 Foley days Linear (Rate/1000 Foley days)

FIGURE 2. Hospital-Acquired CAUTI on 2 Medical/Surgical Units

CA-UTI 7.5 per 1000 catheter days to 4.42 per 1000 catheter days, then to .46 per 1000 catheter days

Impact on UTI with Basin Bathing

UTI Rate- Removal of Prepackaged Bath Product QTR 3 FY05

McGuckin M, et al. AJIC, 2008;36:59-62

The Effect of Bathing with Basin and Water and UTI Rate, LOS and Costs

Unit Census: 14				
Phases	Product Cost	No. of UTI	Median ⁴ LOS 17 Days	Median ⁴ Cost (4857.00)
I- Pre-Packaged Bathing Washcloths (9 months)	\$10,530 ¹ (\$3.00)	25	175	\$117,175
II- Basin/Water (9 months)	\$3,510 ² (\$1.00)	48	336	\$224,916
III- Additional Product Cost, UTI, LOS, COSTS	\$7,020	23 ³	151	\$107,741

¹Based on 3 packages of 8 towels each ²Based on product cost of towels, soap, and basin³ Difference between phase I pre-package/phase II basin water⁴

Review of Literature: Bathing & CAUTI's

- Bacterial contamination of bath basins is common leading to the recommendation that bathing wipes replace bath basins to reduce HAI's & CAUTI's
- A Non medicated basin less bathing lowered the incidence of CAUTI's, decreased bathing time and resulted in a cost savings
- ▲ No data to support benefit of CHG wipes in reducing CAUTI's
 - \triangle Studies on going

Cleansing of Patients with Indwelling Catheter

- Indwelling catheter care should occur with the daily bath (basinless bathing), as a separate procedure using clean technique
- A There is no evidence to support 2x a day indwelling catheter care
- If a large liquid stool occurs, bathe the patient with basinless bathing
- ▲ Apply barrier cloth to area of skin requiring protection

Comparison of Wash Basin Baths & Disposable Baths

- A RCT comparing basin bath to disposable bath
- 58 patient served as own control
- Baths were observed
- A Nurse bathed same patient using both methods
- 💪 Measured
 - \triangle Duration & quality of bath
 - \triangle Patient satisfaction
 - \triangle Nurse satisfaction
 - \triangle Cost-
 - Basin bath: towels, soap, moisturizer, hot water, basins
 - Disposable package bath and towels

Table 1 Duration

	Disposable baths	Wash basins	Wilcoxon
	(n = 58) Minutes	(n = 58) Minutes	signed-rank
	(interval)	(interval)	test (p-value)
Preparation	4 (2-5)	5 (3-10)	<0.001
The bath	21 (8-35)	26 (13-42)	<0.001
Cleaning up	4 (1-6)	5 (2-8)	<0.001
Total	29 (14-44)	36 (22-54)	<0.001

Less time was used with the disposable bath in all three categories. This was significant (p < 0.001)

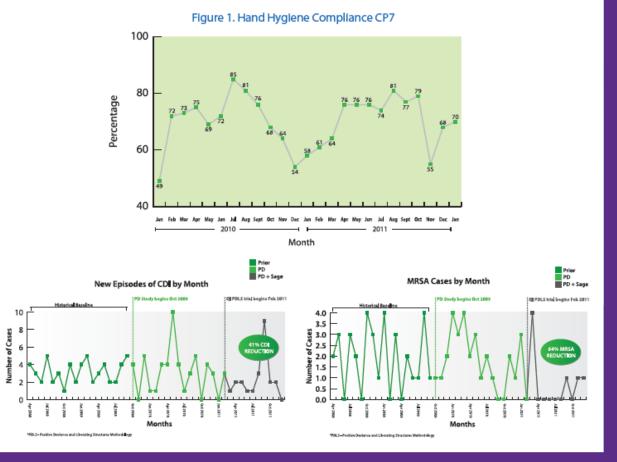
Table 2 Pati	ents' bath type preferer	nces	
Patient htewiew	Prefer disposable bath	Prefer wash basins	Equal
n = 51*	24 (47%)	11 (22%)	16 (31%)

Table 3 Nurses' bath type preferences

Nurse ID	Prefer disposable baths (n)	Prefer wash basins (n)	Equal (n)
NH -1	5	0	0
Llb -2	5	1	0
Nbj -3	12	1	0
Hm -4	11	2	0
JI -5	8	0	0
Cp -6	6	2	1
Total	47 (87%)	6 (11%)	1 (2%)

A significant number of nurses preferred the disposable bath when comparing the two bath types (p < 0.01).

Cost equal if labor excluded


Nøddeskou LH, et al. Scand J Caring Sci. 2015;29(2):347-352.

Changing IP Culture at the Unit Level

- A 2 subacute medical units with HAI's
- A QI initiative to change infection prevention culture
 - \triangle Environmental cleaning
 - \bigtriangleup hand hygiene
 - \bigtriangleup ward policy and procedures
 - \triangle patient care
 - basinless bathing/removed basins
 - single use toiletry
 - isolation BP cuffs
 - IP checklist

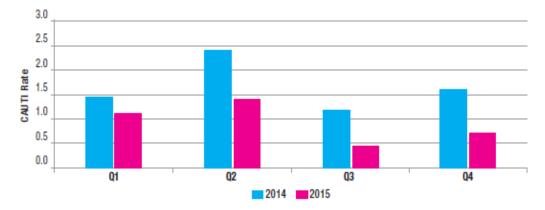
RESULTS

Since the commencing of the project in October 2009 to December 2011, hand hygiene compliance has increased by over 30%, MRSA rates have decreased 64% and C. difficile has decreased 41%. Since the removal of the washbasins in January of 2011, there have been no gastroenteritis outbreaks.

Crump M, et al. Presented at APIC 2012, June 4-6th, San Antonia TX

For Successful Banning of Basins for Patient Care

▲ We need to provide alternatives for the other functions:


Current	New	
Emesis	Emebags being installed in every adult and ped pt. room, ACU, PACU	
Storage of patient items	Clear plastic "baggies" Trial of "Concierge List" to decrease waste of unused/unneeded products	
Foot soaks	Shampoo caps, prepackaged	
Shampoo patient's hair	Shampoo caps par'd on all units	
24 hour urine, ice	Store some basins in lab to be dispensed with each 24 hour jug	
Bath cloths with no insulation, cold halfway through bath	Bath cloths with insulation to stay warm longer	

Changing Bathing & Incontinence Management Impacts CAUTI's

A Pre implementation

- Daily bath with reusable basin & soap and tap water
- △ Incontinence cleaning, peri-spray, soap and tap water
- A New bathing & incontinence protocol
 - \triangle Basins eliminated
 - △ Prepackage bathing & peri spray/prepackage cloths

59% reduction

	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
2014 Catheter Days	1,210	1,211	1,063	1,276	999	1,056	1,095	1,121	1,146	1,105	1,076	987
# of CAUTI	2	3	0	3	4	1	2	2	0	2	0	3
2014 CAUTI Rate	1.7	2.5	0.0	2.4	4.0	0.9	1.8	1.8	0.0	1.8	0.0	3.0
2015 Catheter Days	916	710	961	697	714	681	886	822	540	883	866	1050
# of CAUTI	2	0	1	2	0	1	1	0	0	1	1	0
2015 CAUTI Rate	2.2	0.0	1.0	2.9	0.0	1.5	1.1	0.0	0.0	1.1	1.2	0.0

The compared of the basis has been shown to reduce risk feature for UTIel

ROI for 12-month intervention: \$33,234.00

Cineas N, Beswick R, Vezina M Poster presented at the American Association of Critical-Care Nurses National Teaching Institute May 16-19, 2016

Non-Vent Pneumonia: Addressing Risk Factors

Build the Will: NV-HAP Causes Harm

- ▲ HAP 1st most common HAI in U.S.
- 1 in every 4 hospital infections are pneumonia
 - △ 60% non-ventilator
- \land Increased mortality \rightarrow 15.5%-30.9%
 - △ 8½ x more likely to die than equally sick patients who did not get non-vent HAP

Magill SS, et al. NEJM 2018;379:1732-1744 Micek ST, et al. Chest. 2016 Nov;150(5):1008-1014. Baker D, Quinn B et al. J Nurs Care Qual, 1-7. Giuliano K, et al. Am J of Infect Control. 2018;46:322-327 Davis J et al. Pa Patient Safety Advisory, 2018;15(3) Strassle PD, et al. Infect Control Hosp Epidemiol. 2020 Jan;41(1):73-79. Lacerna CC, et al. Infec control & Hosp Epidemiology 2020;41, 547-552

Build the Will: NV-HAP Causes Harm

- \land Increased morbidity \rightarrow 50% are not discharged home
 - \triangle Extended LOS \rightarrow 7-9 days
 - ightarrow Increased Cost ightarrow \$36K to \$54K per case
 - \triangle 2x likely for readmission <30 day
 - \triangle 46% \uparrow ICU utilization
 - \triangle Increase antibiotic utilization

Magill SS, et al. NEJM 2018;379:1732-1744 Micek ST, et al. Chest. 2016 Nov;150(5):1008-1014. Baker D, Quinn B et al. J Nurs Care Qual, 1-7. Giuliano K, et al. Am J of Infect Control. 2018;46:322-327 Davis J et al. Pa Patient Safety Advisory, 2018;15(3) Strassle PD, et al. Infect Control Hosp Epidemiol. 2020 Jan;41(1):73-79. Lacerna CC, et al. Infec control & Hosp Epidemiology 2020;41, 547-552

Hospital-Acquired Pneumonia: Non-Ventilated versus Ventilated Patients in Pennsylvania

Purpose:

Compare VAP and NV-HAP incidence, outcomes

Methods:

- \Lambda Pennsylvania Database queried
- \Lambda All nosocomial pneumonia data sets (2009-2016)

Results:

Year	Number of NV-HAP Patients	Number of NV-HAP Patients Who Died	Percentage of Patients with NV-HAP Who Died (Confidence Interval)	Number of VAP Patients	Number of VAP Patients Who Died	Percentage of Patients with VAP Who Died (Confidence Limit)	
2009	1,977	364	18.41 (16.52–20.3)	922	163	17.68 (14.96–20.39)	
2010	1,848	366	19.81 (17.78–21.83)	737	144	19.54 (16.35–22.73)	
2011	1,780	318	17.87 (15.9–19.83)	643	127	19.75 (16.32–23.19)	
2012	1,620	307	18.95 (16.83–21.07)	571	112	19.61 (15.98–23.25)	
2013	1,528	285	18.65 (16.49–20.82)	767	160	20.86 (17.63–24.09)	
2014	1,419	256	18.04 (15.83–20.25)	901	199	22.09 (19.02–25.16)	
2015	1,427	277	19.41 (17.13–21.7)	912	218	23.90 (20.73–27.08)	
2016	1,380	280	20.29 (17.91–22.67)	980	221	22.55 (19.58–25.52)	
Total	12,979	2453	18.89%	6433	1344	20.89%	

- \Lambda Mortality
- ▲ Incidence
- ▲ Total deaths
- \land Total cost
- ▲ Wide-spread

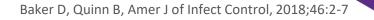
Retrieved on 13/17/2020 from http://patientsafety.pa.gov/ADVISORIES/Pages/201809_NVHAP.aspx

NV-HAP SMCS Research Findings: 2010

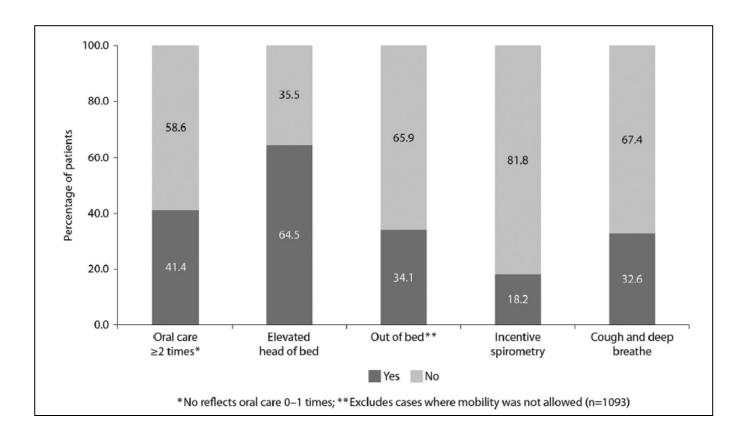
Incidence:

- \Lambda 115 adults
- 🛕 62% non-ICU
- \Lambda 50% surgical
- \land Average age 66
- Common comorbidities:
 - CAD, COPD, DM, GERD
- Common Risk Factors:
 - Dependent for ADLs (80%)
 - CNS depressant meds (79%)

24,482 patients and 94,247 pt days


Cost:

- 🛦 \$4.6 million
- ▲ 23 deaths
- ▲ Mean Extended LOS 9 days
- ▲ 1,035 extra days


HAPPI-2 Incidence of Non-Ventilator Hospital-Acquired Pneumonia

- ▲ Multicenter retrospective chart review
- Extracted NV-HAP cases per the 2014 ICD-9-CM codes for pneumonia not POA and the 2013 CDC case definition
- A 21 hospitals completed data collection
- Measured nursing care missed 24hrs before diagnosis
- ∧ Non-vent HAP occurred on every unit

HAPPI-2 Incidence of Non-Ventilator Hospital-Acquired Pneumonia

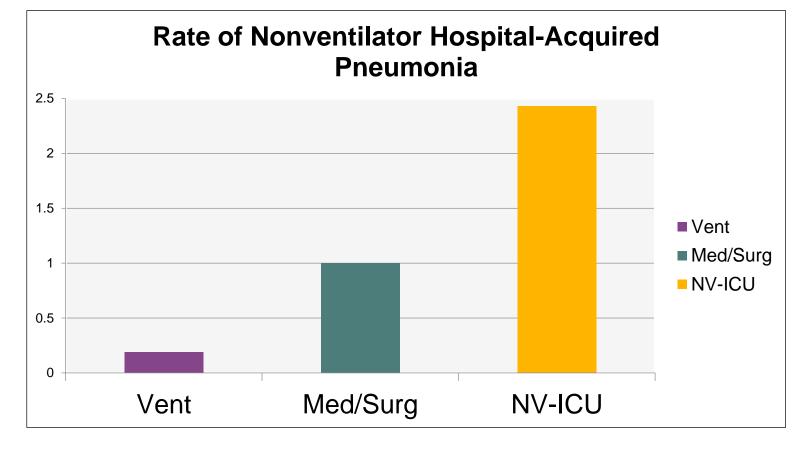
Missed nursing care 24 hours prior to Non-Vent HAP dx.

HAPPI-2 Incidence of Non-Vent Hospital-Acquired Pneumonia

Results:

- △ 1,300 NV-HAP (0.12-2.28 per 1,000 pt days)
 - \triangle 15.8% mortality
 - △ 50% < 66 yrs old
 - \triangle 63% non-surgical
 - △ 70.8% outside the ICU
 - \bigtriangleup 27.3 % in ICU
 - △ 18.8% transferred to ICU
 - △ 37.3% LOS >20 days
 - △ 57.7% LOS > 15 days
 - △ 40.6% admitted from home were discharged back to home
 - \bigtriangleup 19.3% readmitted within 30 days
 - \triangle \$36.4 -\$52.56 million in extra costs

- Med-Surg (43.1%; n = 560)
- Telemetry (8.5%; n = 111)
- Progressive (7.2%; n = 93)
- Oncology (4.9%; n = 64)
- Orthopedic (2.8%; n = 37)
- Neurology (1.5%; n = 19)
- Obstetric (0.2%; n = 3)

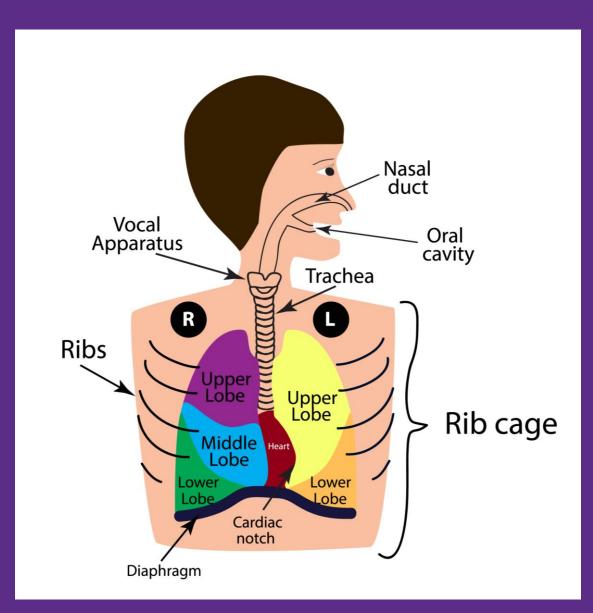

Is Pneumonia Part of the Sepsis Picture?

30-50% of sepsis cases may initiate with pneumonia

Site of infection	Frequ	ency %	Mortality %		
	Male	Female	Male	Female	
Respiratory	41.8	35.8	22.0	22.0	
Bacteremia	21.0	20.0	33.5	34.9	
Genitourinary	10.3	18.0	8.6	7.8	
Abdominal	8.6	8.1	9.8	10.6	
Device related	1.2	1.0	9.5	9.5	
Wound/ soft tissue	9.0	7.5	9.4	11.7	
Central nervous system	0.7	0.5	17.3	17.5	
Endocarditis	0.9	0.5	23.8	28.1	
Other/ unspecified	6.7	8.6	7.6	6.5	

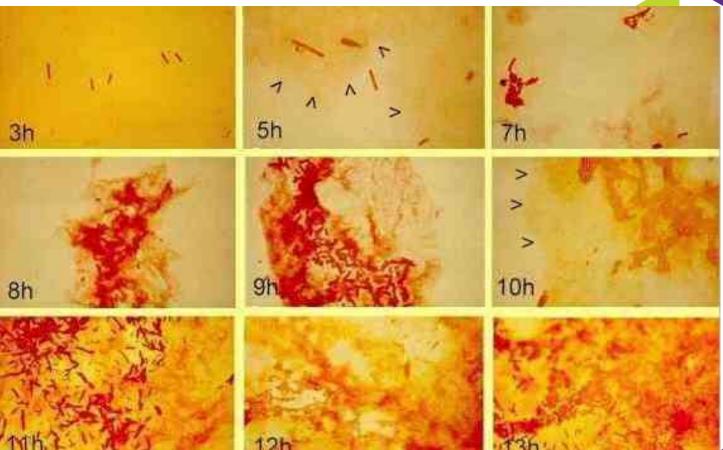
Risk of developing sepsis 28x greater with NVHAP than with pneumonia on admission

NV-HAP per 1000 patient days


Addressing the risk-factors associated with NV-HAP through evidence based fundamental nursing care strategies

Single Ecosystem

- Entire respiratory tract is one ecosystem
 - \triangle Upper-nasal and oral cavities
 - △ Lower-alveoli
- \Lambda Not sterile environment
- A Oral flora changes in hospitalized patients
- A Relationship between dental plaque and pulmonary lavage fluid

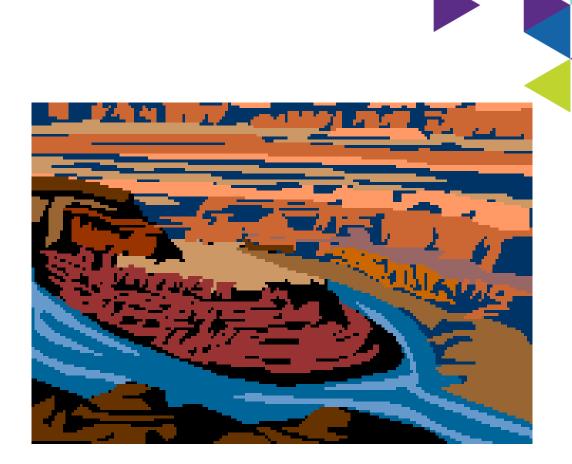

Huffnagle GB, et al. Mucosal Immunol. 2017 Mar;10(2):299-306 Johanson WG, et al. N Engl J Med. 1969 Nov 20;281(21):1137-40 Heo SM, et al. Clin Infect Dis. 2008 Dec 15;47(12):1562-70.

Where does Pneumonia Start: Oral Bacteria during Hospitalization & Illness

\land Oral cavity

- \triangle > 1 billion oral microbes
- △ 700-1000 species
- \triangle Replicate's 5 x in 24hr period
- **Disruption of Microbiome**
 - △ Plaque, gingivitis, tooth decay
 - △ Reduced salivary flow/change in pH
- △ 24-48 hours for HAP pathogens in mouth
- If aspirated =100,000,000 bacteria/ml saliva into lungs

Oral Cavity & VAP


- A 89 critically ill patients
- Examined microbial colonization of the oropharynx through out ICU stay
- Used pulse field gel electrophoresis to compare chromosomal DNA
- ▲ Results:
 - △ Diagnosed 31 VAPs
 - 28 of 31 VAPs the causative organism
 was identical via DNA analysis

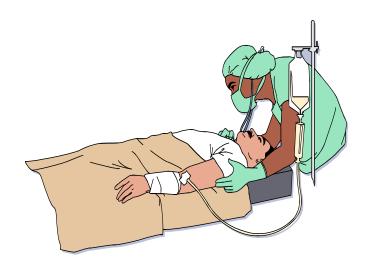
- 49 elderly nursing home residents admitted to the hospital
- Examined baseline dental plaque scores & microorganism within dental plaque
- Used pulse field gel electrophoresis to compare chromosomal DNA
- \Lambda Results
 - △ 14/49 adults developed pneumonia
 - △ 10 of 14 pneumonias, the causative organism was identical via DNA analysis

Role of Salivary Flow

- A Provides mechanical removal of plaque and microorganisms
- Innate & specific immune components (IgA, cortisol, lactoferrin)
- A Patients receiving mechanical ventilation have dry mouth which in turn contributes to accumulation of plaque & reduced distribution of salivary immune factors

Micro Aspiration during Sleep in Healthy Subjects

- A Prospective duplicate full-night studies
- ▲ 10 normal male's 22-55 years of age
- Methods:
 - Radioactive 99 mTc tracer inserted into the nasopharynx
 - Lung scans following final awakening
 - No difference in sleep efficacy between 2 study nights
- \land Results:


In the lung parenchyma

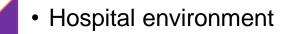
Body Position: Supine versus Semi-recumbent (30-45 degrees)

Methodology

- 19 mechanically ventilated patients
- A 2 period crossover trial
- Study supine and semirecumbent positions over 2 days
- Labeled gastric contents (Tc 99m sulphur colloid)
- Measured q 30 min content of gastric secretions in endobronchial tree in each position
- Sampled ET secretions, gastric juice & pharyngeal contents for bacteria

Body Position: Supine versus Semi-recumbent

Results:


- A Radioactive contents higher in endobronchial secretions in supine patients
- ▲ Time dependent:
 - Supine: 298cpm/30min vs.
 2592cpm/300min
 - HOB: 103cpm/30min vs.
 216cpm/300min

Same microbes cultured in all 3 areas

- HOB: 32%
- Supine: 68%

Risk Factors for Pneumonia

Healthcare workers

Pathogens

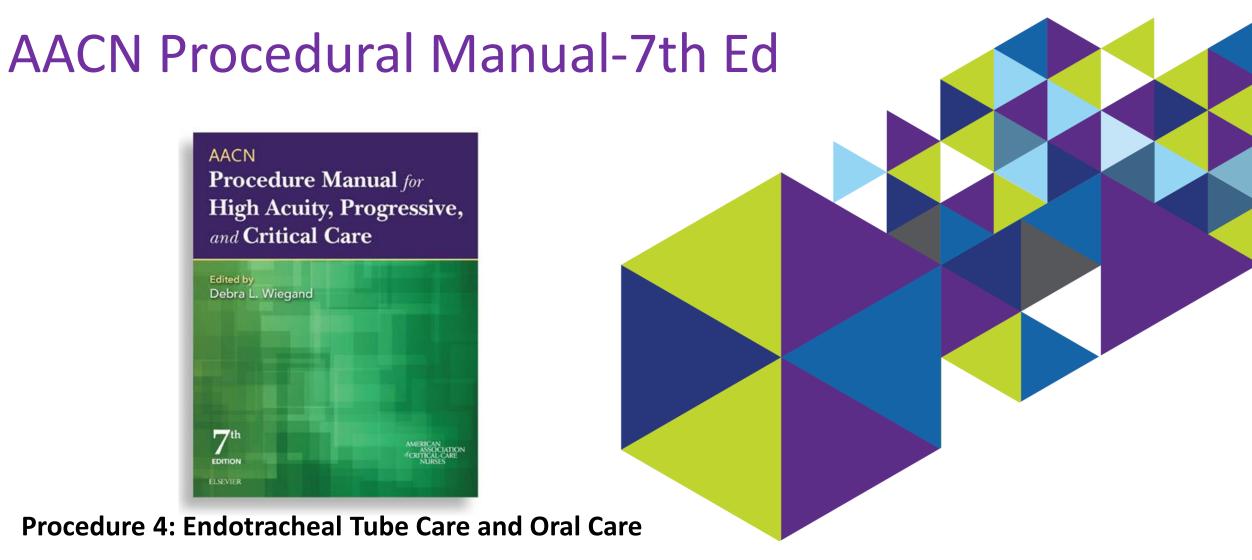
Disruption of normal oral flora

• Supine position

CNS depressant medications

Aspiration • Invasive tubes

• Surgery


Immobility

Weak Host • Co-morbid conditions

Quinn & Baker. (2014). J Nsg Scholarship, 46(1), 11-19.

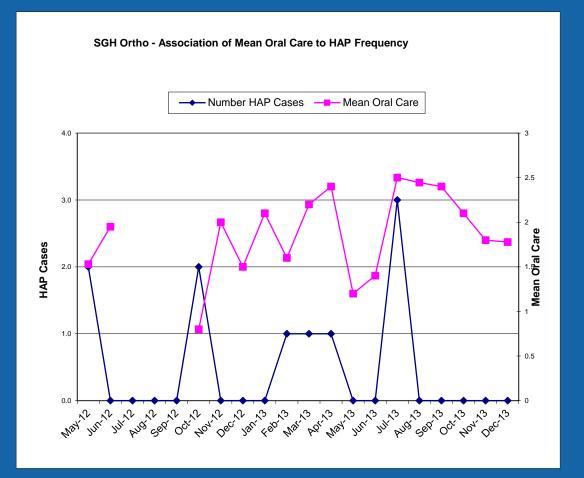
Authors:

Kathleen M Vollman Mary Lou Sole Barbara Quinn

SMCS HAP Prevention Plan

Phase 1: Oral Care

- Formation of new quality team: Hospital-Acquired Pneumonia Prevention Initiative (HAPPI)
- A New oral care protocol to include non-ventilated patients
- A New oral care products and equipment for all patients
- Staff education and in-services on products
- A Ongoing monitoring and measurement
 - \triangle Monthly audits

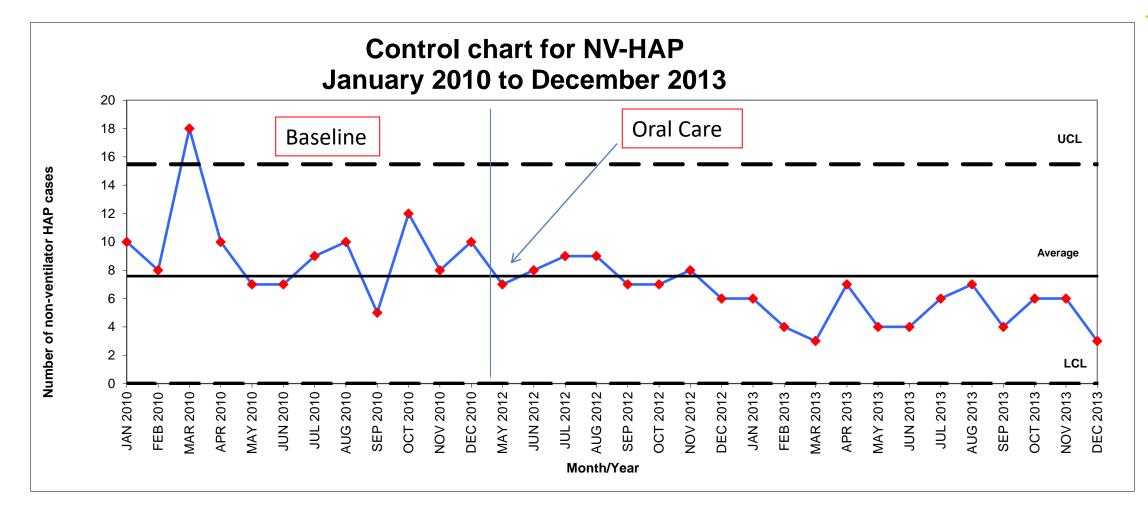


Protocol – Plain & Simple

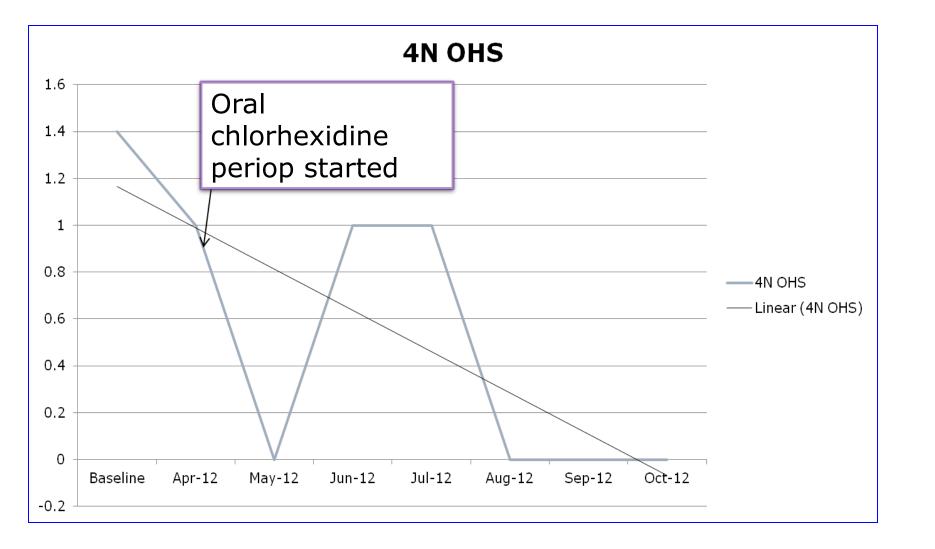
Patient Type	Tools	Procedure	Frequency	
Self Care / Assist	 Brush, paste, rinse, moisturizer Soft-bristled toothbrush Toothpaste with dentifrice Antiseptic mouth rinse (alcohol-free) Moisturizer (Petroleum-free) 	Provide tools Brush 1-2 minutes Rinse	4X / day	
Dependent / Aspiration Risk	Suction toothbrush kit (4)	Package instructions	4X / day	
Dependent / Vent	ICU Suction toothbrush kit (6)CHG for vent & cardiac surgery patients	Package instructions	6X / day	
Dentures	Denture cup, brush Cleanser Adhesive	Remove dentures & soak Brush gums, mouth Rinse	4X / day	

Provide Meaningful Data

- A Ortho Unit had ZERO HAP cases in the last 4 months of 2013!!
- ▲ Great WORK!!
- A Remember, the goal is to provide and document oral care after each meal and before bedtime.


Used with permission from Barbara Quinn

Oral Care Knowledge & Attitude Survey:

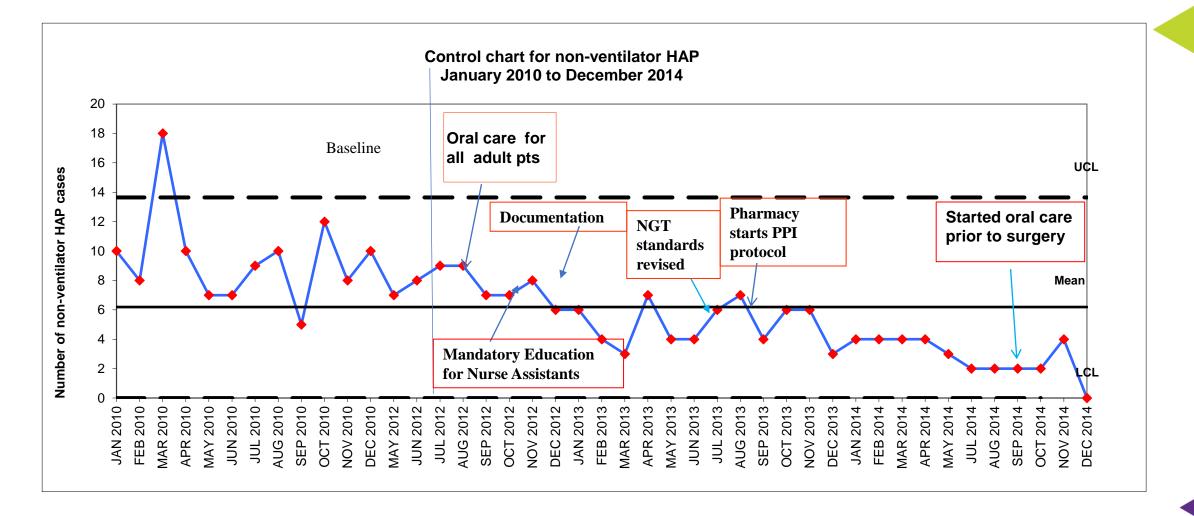

\Lambda Method:

- Staff survey
- Pre Post education
- \Lambda Results:
 - Awareness of oral care protocol (77%)
 - Priority of care for NAs (96%)
 - RN perception that their patients received oral care (300%)

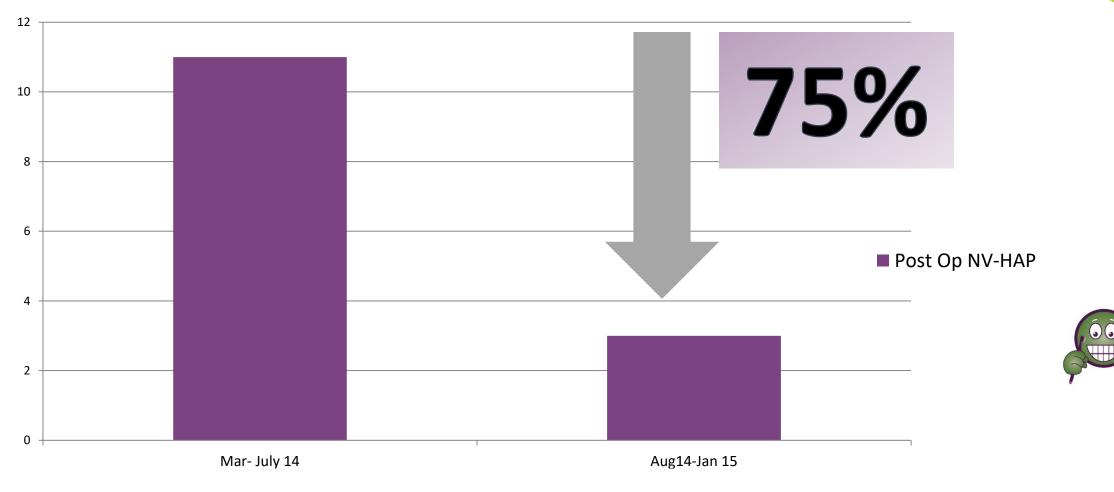
NV-HAP Incidence 50 % Decrease from Baseline

Open Heart Surgery Patients: NV-HAP Reduced 75%

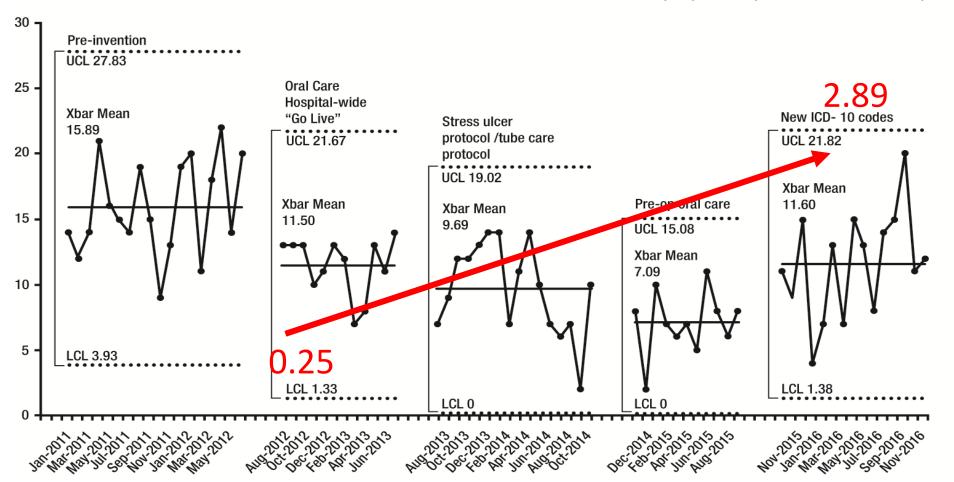
Return on Investment


- ▲ 60 NV-HAP avoided Jan 1 Dec. 31 2013
- \$2,400,000 cost avoided
- <u>- 117,600</u> cost increase for supplies
- \$2,282,400 return on investment

8 lives saved


PRICELESS

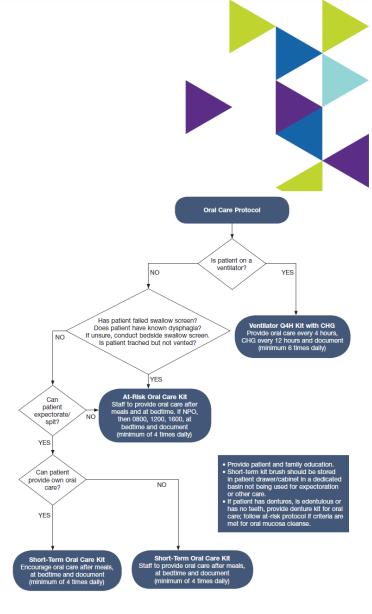
NV-HAP \downarrow 70% from baseline!



Post-Operative NV-HAP (all adult inpatient surgery) Incidence 6 months Pre-Oral Care vs. 6 Months After

Sustainability Hospital Wide Oral Care from .25 to 2.89 (almost 3x a day)

Figure 1: Statistical process control R and X-bar-charts: International Statistical Classification of Diseases and Related Health Problems (ICD) codes (3 standard deviations)


Outcomes: From the Beginning to 2014

- A Between May 2012 and December 2014
- ▲ Sutter Medical Center avoided 164 cases of NV-HAP:
 - \triangle \$5.9 million
 - \triangle **31 lives**
 - $\bigtriangleup\,$ 656-1476 extra days in the hospital

Nurse Driven Oral Care Protocol to Improve NV-HAP

- A QI project, 650 bed level 1 trauma center
- Data measure retrospectively/prospectively using ICD 9
 & 10 codes not POA for NV-HAP and VAP
- A 7 months baseline, 7 months intervention
- ▲ Method:
 - \bigtriangleup Evaluated current practice, the literature and oral care supplies
 - △ Pilot program with new oral care protocols/supplies for self care, assisted oral care and ventilator oral care
 - \triangle Expanded to whole hospital post pilot area

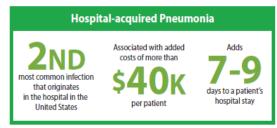
Results

Staff adherence to protocol 76% (36%-100%)

\Lambda NV-HAP

- △ Baseline: 202 charts/52 NV-HAP's-20 deaths
- △ Post: 215 charts/26 NV-HAP's (p< 0.0001)-4 deaths

\land VAP


- △ Baseline: 56 VAE's/ 12 VAP's (2.87 per 1000 vent days)
- \triangle Post: 49 VAE's/3 VAP's (1.26 per 1000 vent days

50% reduction in NV-HAP, avoided 16 deaths & 1.4 million dollars

Figure 2. Patient Education Information Sheet

A Healthy Mouth Is Important for Your Health

Your mouth has more than 700 types of germs, some of which can lead to pneumonia. One of the best ways to reduce the risk of pneumonia in the hospital is by taking care of your mouth. This includes brushing your teeth, using a mouth rinse and making sure your mouth doesn't get too dry.

After you get out of the hospital, it's important to continue to take care of your mouth by brushing your teeth two times a day for two minutes, flossing at least one time a day and visiting your dentist regularly. For more information on oral health, go to: www.deltadentalmi.com

Sparrow Health System and Delta Dental of Michigan have partnerd to make sure you have the tools you need to help prevent pneumonia. They include: a soft toothbrush and/or oral swabs, an antiseptic mouth rinse, a baking soda toothpaste and mouth moisturizer.

At Sparrow, there are three types of oral care kits available:

Short-term Oral Care Kit At-r

Use this kit if you can: Use

Swallow without difficulty
 Spit without difficulty
 Recommended for use <u>at least four</u>
 times per day, including after meals

and at bedtime.

At-risk Oral Care Kit Use this kit if you can: • Trouble swallowing • Difficulty spitting • Recent stroke • Tracheostomy without a ventilator

Recommended for use <u>at least four times</u> <u>per day</u>, including after meals and at bedtime. If you are unable to eat or drink, the recommended scheduled times are 8 a.m., noon, 4 p.m. and bedtime.

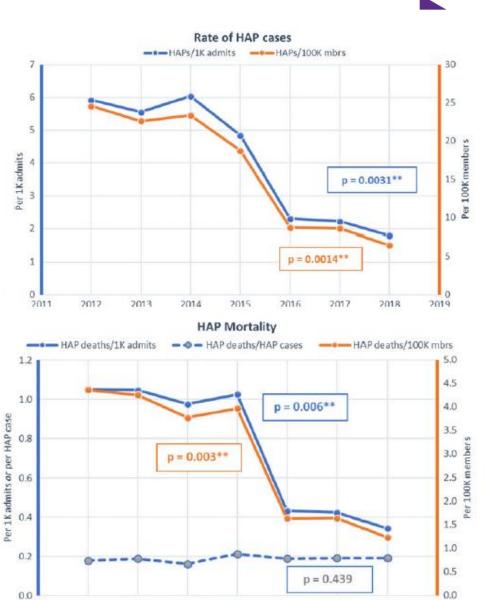
If you or your family are unable to

provide your oral care, a staff member

Ventilator Oral Care Kit Use this kit if you are on a ventilator, have a breathing tube (endotracheal tube) or a tracheostomy in place.

The hospital staff will provide oral care <u>every four hours</u> and use a special chlorhexidine (CHG) mouth rinse every 12 hours.

For more information, please ask a nurse on any patient unit. 6300 v1 PA 8/15


will assist you.

A Successful Program to \downarrow NVHAP in a Large Hospital System

2011

2012

- 21 hospital system
- Longitudinal observational design
- \Lambda Intervention
 - △ Upright for meals, mobilization, swallow evaluation, sedation restrictions, rigorous oral care, feeding tube care (ROUTE)
- Additional results
 - \bigtriangleup Reduction in antibiotic days
 - Carbapenem, quinolone, aminoglycoside & vancomycin
 - $\triangle \downarrow$ Benzodiazepine use

2019

2018

201

WHEN WOULD NOW BE A GOOD TIME TO DO THIS?

It is not enough to do your best; you must know what to do, and THEN do your best.

~ W. Edwards Deming

Forbid yourself to be deterred by poor odds just because your mind has calculated that the opposition is too great. If it were easy, everyone would do it.

Earn free CE credits

To get started:

Register on FocusRN.stryker.com Please access on desktop, laptop, or tablet

Check your email the week following your event. You'll receive an evaluation to complete.

On your next visit to the website, you'll see a message prompting you to complete your evaluation. This will allow you to access your downloadable certificate of completion.

Focus

accredited clinical education

FocusRN.stryker.com

Stryker is accredited as a provider of continuing education in nursing by the California Board of Registered Nursing (provider number CEP 15927). CMR 27582

Kathleen M. Vollman MSN, RN, CCNS, FCCM, FCNS, FAAN Clinical Nurse Specialist / Educator / Consultant ADVANCING NURSING kvollman@comcast.net Northville, Michigan www.vollman.com

kvollman@comcast.net | www.Vollman.com