Sepsis Update 2021: Incidence, Mortality and Bundle Science Update

Kathleen M. Vollman MSN, RN, CCNS, FCCM, FCNS, FAAN Clinical Nurse Specialist / Educator / Consultant ADVANCING NURSING kvollman@comcast.net Northville Michigan www.Vollman.com

DISCLOSURES FOR KATHLEEN VOLLMAN

- Consultant-Michigan Hospital Association Keystone Center
- Subject matter expert HRET: CAUTI, CLABSI, HAPI, Sepsis, Safety culture for HRET
- Consultant and speaker bureau:
 - Stryker Sage
 - Potrero Medical
 - La Jolla Pharmaceutical
 - Baxter Healthcare

Objectives

- A Determine the impact sepsis has on mortality, location of disposition in long range economic impact
- A Examine any new evidence on the bundles and implementation

Polling Question

- ▲ Who is with us today?
 - \triangle Quality coordinator
 - \triangle Sepsis coordinator
 - \triangle CMO, CNO, CEO
 - \triangle Unit manager
 - \triangle Physicians/APP's
 - △ Frontline nurses
 - △ Nurse educators
 - \triangle Clinical nurse specialist

Sepsis is a Public Health Problem

- ▲ Affects >1.7 million Americans per year
- 3rd leading cause of death in the US
- 1-week mortality for Medicare beneficiaries with sepsis is 18% vs
 4.1% with no sepsis
- Sepsis occurs in just 10% of U.S. hospital patients, but it contributes to as many as half of all hospital deaths
- \$41.5 billion spent on sepsis inpatient care and skilled nursing for Medicare beneficiaries in 2018
- 87% of all adult sepsis cases begin outside the hospital

Rhee C, et al. *JAMA*. 2017;318(13):1241-1249. Angus DC, et al.. *Crit Care Med* 2001;29:1303-10. Buchman TG, et al. Crit Care Med. 2020;48(3):276-288. Novosad SA, et al. CDC Morbidity and Mortality Weekly Report., 2016;65(33):864-869 Buchman TG, et al. Crit Care Med. 2020;48(3):276-288

1 every 2

minutes

Sepsis is the body's response to infection. Sepsis develops when the immune system fails to limit an infection and vital organ function is compromised. The rise in inpatient admission rates and counts is proportional across all severities of sepsis. The rate of hospital acquired sepsis ("not present on admission") declined.

Ē

The sepsis event not only predicted higher mortality, but also a poorer quality of life with fewer returning to their family home (57% versus, 80% for non-sepsis admissions) 6 months following a sepsis inpatient admission

Sepsis is the most costly of inpatient diagnoses.

More than 1.7 million Americans develop sepsis annually. More than a quarter million die from sepsis. Source : https://www.cdc.gov/sepsis/datareports/index.html

Sepsis inpatient admissions rates (per million beneficiaries) rose even faster than the Medicare beneficiary population. In 2018, the count of sepsis inpatient admissions was ~65% greater than it was in 2012

The Burdens Of

Medicare spent more than \$41.5 billion on sepsis inpatient admissions and subsequent skilled nursing facility care in 2018.

A contemporary rough-order of magnitude estimate of the minimum cost of sepsis in 2019 is in excess of **\$62 billion**.

- It does NOT include doctor bills.
- It does NOT include costs of subsequent outpatient care.
- It does NOT include economic losses.
- It does **NOT** include care delivered through federal health systems

The cost of sepsis inpatient admission is steadily declining, and even though the study shows improvement in survival with each passing year, the number of beneficiaries and their rates of sepsis inpatient stays is overwhelming.

This study presents the most comprehensive analysis of paid Medicare Claims via the Centers for the Medicare & Medicaid Services Data Link Project to provide contemporary estimates of the burden, cost and mortality associated with acute inpatient Medicare beneficiaries admission for sepsis.

Data from Buchman TG, Simpson SQ, Sciarretta KL, et al: Crit Care Med 2020

ccmjournal.org #CritCareMed

Sepsis Admissions and Mortality for Medicare Beneficiaries

Over the 7-year study interval, the rate of sepsis admissions increased by 50%.

Mortality after hospital discharge is high

- The one-week mortality after discharge among Medicare beneficiaries for
 - Septic shock 40.6%
 - Severe sepsis 15.3%
 - Unspecified sepsis is 11%.
- 6-month after discharge (CY 2018), Medicare beneficiaries mortality rate;
 - septic shock 60%
 - severe sepsis 36%
 - unspecified sepsis 30.9%.
- This high mortality rate continues at 1 and 3 years post initial sepsis hospitalization.

Sepsis Deaths by Age Group

Sepsis Deaths by Age Group

(N = 2,470,666) based on death certificate data, by age groups* — United States, 1999–2014

Epstein L, Dantes R, Magill S, Fiore A. Varying Estimates of Sepsis Mortality Using Death Certificates and Administrative Codes — United States, 1999–2014. MMWR Morb Mortal Wkly Rep 2016;65:342–345. DOI: <u>http://dx.doi.org/10.15585/mmwr.mm6513a2</u>

AHRR Most Prevalent Conditions Requiring Hospitalization

Source: AHRQ, Healthcare Cost and Utilization Project Statistical Brief #277: *Most Frequent Principal Diagnoses for Inpatient Stays in U.S. Hospitals, 2018.* https://www.hcup-us.ahrq.gov/reports/statbriefs/sb277-Top-Reasons-Hospital-Stays-2018.jsp HCUP Data Partners can be found at: www.hcup-us.ahrq.gov/partners.jsp

Common Causes of Hospitalization Adults aged 85 and over: U.S.

Γ		2000	2005	2010	Percent change ¹ (2000 to 2010)				
	First-listed diagnosis	Rate of hospitalization per 1,000 population							
ľ	Congestive heart failure	48	47	43	-9.5				
	Pneumonia	51	52	34	-32.8				
	Urinary tract infection	19	24	30	+55.9				
	Septicemia	15	18	28	+84.8				
9	Stroke	37	27	28	-25.0				
	Hip fracture 28 23 21 -25.4								
¹ Percent change for each diagnosis is significant from 2000 through 2010 (p < 0.05).									
NOTE: First-listed diagnosis is considered to be the main cause or reason for the hospitalization. The									
diagnoses were chosen because they were the top six first-listed diagnoses in 2010.									
S	SOURCE: CDC/NCHS, National Hospital Discharge Survey, 2000-2010.								

Levant S, Chari K, DeFrances CJ. Hospitalizations for patients aged 85 and over in the United States, 2000–2010. NCHS data brief, no 182. Hyattsville, MD: National Center for Health Statistics. 2015.

Hospital Readmission is Common

Hospital Readmission and Healthcare Utilization Following Sepsis in Community Settings

Vincent Liu, MD, MS¹*, Xingye Lei, PhD, MA², Hallie C. Prescott, MD³, Patricia Kipnis, PhD^{1,2}, Theodore J. Iwashyna, MD, PhD^{3,4}, Gabriel J. Escobar, MD¹

Frequency, Cost, and Risk Factors of Readmissions Among Severe Sepsis Survivors*

Andrew J. Goodwin, MD, MSCR¹; David A. Rice, MD¹; Kit N. Simpson, DrPH²; Dee W. Ford, MD, MSCR¹

Post-Acute Care Use and Hospital Readmission after Sepsis

Tiffanie K. Jones^{1,2}, Barry D. Fuchs^{1,2}, Dylan S. Small^{3,4}, Scott D. Halpern^{1,2,4,5,6}, Asaf Hanish⁷, Craig A. Umscheid^{1,4,5,7}, Charles A. Baillie⁵, Meeta Prasad Kerlin^{1,2,4,5}, David F. Gaieski⁸, and Mark E. Mikkelsen^{1,2,5}

Unplanned Readmissions After Hospitalization for Severe Sepsis at Academic Medical Center-Affiliated Hospitals

John P. Donnelly, MSPH^{1,2,3}; Samuel F. Hohmann, PhD, MS-HSM^{4,3}; Henry E. Wang, MD, MS¹

Rehospitalizations Following Sepsis: Common and Costly*

Dong W. Chang, MD, MS1; Chi-Hong Tseng, PhD2; Martin F. Shapiro, MD, PhD2

All sepsis survivors have an increased risk for readmission (40% within 90 days for Medicare beneficiaries

Liu, et al. J HospMed. 2014. Jones, et al. AnnalsATS. 2015. Donnelly, et al. CritCare Med. 2015. Goodwin, et al. CritCare Med. 2015. Chang, et al. CritCare Med. 2015.

Risk for Readmission

Table. Most Frequent Readmission Diagnoses After Hospitalization for Severe Sepsis

	Severe Sepsis (n = 2617)			
Diagnosis ^a	No. of Survivors	% (95% CI)		
Sepsis	167	6.4 (5.4-7.3)		
Congestive heart failure	144	5.5 (4.6-6.4)		
Pneumonia	92	3.5 (2.8-4.2)		
Acute renal failure	87	3.3 (2.6-4.0)		
Rehabilitation	74	2.8 (2.2-3.5)		
Respiratory failure	65	2.5 (1.9-3.1)		
Complication of device, implant, or graft	52	2.0 (1.5-2.5)		
COPD exacerbation	49	1.9 (1.4-2.4)		
Aspiration pneumonitis	47	1.8 (1.3-2.3)		
Urinary tract infection	44	1.7 (1.2-2.2)		

- Sepsis survivors have an increased risk for readmission (40% within 90 days for Medicare patients) related to
 - \triangle infection/sepsis
 - \triangle heart failure
 - \triangle renal failure.
- Reconciling medications, infection prevention, management of chronic conditions, and cognitive and functional rehabilitation will aid in preventing readmissions.

Sepsis and COVID 19

- △ Sepsis and COVID-19 overlap and are more similar than different
 - \triangle There are semantic in real differences between subsystem COVID-19
 - \vartriangle In both the early and later phases of the disease sepsis in COVID-19 are nearly indistinguishable in clinical treatment goals are the same
- A Both conditions require timely and accurate diagnosis in order to provide appropriate treatment
 - △ Phenotyping an endo typing may be valuable for directing therapy
- ▲ SSG for COVID:
 - \triangle For severe & critical
 - Systemic Corticosteroids
 - Venous thromboprophylaxis
 - △ Non-ventilated patients/severe
 - Remdesivir
 - △ For the acute resuscitation of adults with COVID-19 and shock, we suggest using a conservative over a liberal fluid strategy.

Post-Sepsis Syndrome

- Describes physical and/or long-term effects that affects up to 50% of people who survive sepsis.
- Longer term effects of sepsis include:
 - Sleep disturbance including insomnia
 - Experiencing nightmares, hallucinations, flashbacks and panic attacks
 - Muscle and joint pains which can be severe and disabling
 - Extreme tiredness and fatigue
 - Inability to concentrate
 - Impaired mental (cognitive) functioning
 - Loss of confidence and self-belief

Polling Question

- Mhat is your current mortality for septic shock
 - 1. <20%
 - 2. >20% < 30%
 - 3. >30% <40%
 - 4. >40%

Have We Achieved the Mortality Outcomes our Patients Deserve?

- Septic shock mortality is 38-42%
- ▲ Severe sepsis mortality is 28-32%
- ▲ Sepsis readmissions are 30-35%

(CMS data)

What is current and what is new!!

Sepsis Management

Early identification

TO SAVE LIVES.....

Early antibiotics

Early fluid resuscitation

SSC Guidelines Screening

For hospitals and health systems we recommend using a performance improvement program for sepsis including sepsis screening for acutely ill, high risk patients and standard operating procedures for treatment

Screening for Severe Sepsis

- Develop screening process for ED, rapid response team, ICU and house wide (To screen effectively, it must be part of the nurses' daily routines— i.e., part of admission and shift assessment)
- Education beyond PowerPoint...case studies
- Develop audit process to evaluate compliance and effectiveness
- Ensure screening process has clear "next steps" defined for nursing staff

If you don't screen you will miss patients that may have benefited from the interventions

Electronic Routine Screening

7 Hospital Systems: Northern California

Sepsis Mortality Reduction

- ED& ICU continue improvements
- Emphasis placed on a new patient population

- Introduced screening as part of nurse's shift assessment on the floors
- Already occurring in ED and ICU's
- Started at 1 facility and spread to 6
- Measure impact on bundle compliance and morality

Empowering Nurses for Early Sepsis Recognition accessed

on https://www.youtube.com/watch?v=s687VMj6iwo

Outcomes of Screening on the Floors

2010 Baseline and 2011 Outcomes Data

EPIC Sepsis Predication Model: External Validation

- A Retrospective cohort study
- 27,697 patients > 18yrs of age who had 38,455 hospitalizations
- ESM (EPCI Sepsis Model) calculated every 15 min
- Evaluate area under the curve at hospital level/prediction horizons of 4, 8, 12, 24hrs

		Time horizons			
Model performance	Hospitalization	24 h	12 h	8 h	4 h
Outcome incidence, %	6.6	0.43	0.29	0.22	0.14
Area under the receiver operating characteristic curve (95% CI)	0.63 (0.62-0.64)	0.72 ((.72-0.72)	0.73 (0.73-0.74)	0.74 (0.74-0.75)	0.76 (0.75-0.76)
Positive predictive value (ESM score ≥6), %	12	2.4	1.7	1.4	0.92
No. needed to evaluate (ESM score ≥6) ^a	15	42	59	73	109

▲ Alert score ≥6 identified only 7% of patients whose sepsis was missed by the clinician

EMS did not identify 67% of patients with sepsis despite generating alerts on 18% of all hospitalized patients-causing alarm fatigue

Sepsis (Severe Sepsis) and septic shock are medical emergencies, and we recommend that treatment and resuscitation begin immediately

2017 Surviving Sepsis Guidelines Best Practice Statement

SEP-1: Early Management Bundle

To be completed within 3 hours of time of presentation *

- 1. Measure lactate level
- 2. Obtain blood cultures prior to administration of antibiotics
- 3. Administer broad spectrum antibiotics
- 4. Administer 30ml/kg crystalloid for hypotension or lactate ≥4mmol/L

* Time of presentation is defined as the time of earliest chart annotation consistent with all elements of severe sepsis or septic shock, as ascertained through chart review.

TO BE COMPLETED WITHIN 6 HOURS OF TIME OF PRESENTATION:

- 5. Apply vasopressors (for hypotension that does not respond to initial fluid resuscitation) to maintain a mean arterial pressure (MAP) ≥65mmHg
- In the event of persistent hypotension after initial fluid administration (MAP < 65 mm Hg) or if initial lactate was ≥4 mmol/L, re-assess volume status and tissue perfusion and document findings according to table 1.
- 7. Re-measure lactate if initial lactate elevated.

SURVIV	ING SEPSIS CAMPAIGN RECOM	Evans L, et al. ICM 2021;			
	2012	2016	2021		
SEPSIS DEFINITION	Systemic manifestation of infection + suspected infection Severe sepsis: sepsis + organ dysfunction	Life threatening organ dysfunction caused by dysregulated response to infection No severe sepsis category	No change from 2016		
INITIAL RESUSCITATION	Crystalloid fluid (no recommendatio	kg in first 3 hours ons on 0.9% NaCl vs balanced solution) re "substantial" fluids (weak)	For patients with sepsis induced hypo perfusion or septic shock we suggest that at least 30ML per kilogram of IV crystalloid fluid should be given within the first three hours of resuscitation. We suggest using balanced crystalloids instead of normal saline for resuscitation.		
	Protocolized care including CVP ScVO2 Normalize lactate	Use dynamic resuscitation markers (passive leg raise) Target MAP of 65mmHg Reassess hemodynamic status to guide resuscitation Normalize lactate	No change from 2016 Suggest use of cap refill to assess resuscitation		
VASOPRESSORS	1. Nore 2. Epinephrine if not at target MAP OR vaso	P of 65 mmHg pinephrine pressin to reduce norepinephrine requirement ne in most patinets	No change- from 2016 We suggest starting vasopressors peripherally to restore MAP rather than delaying initiation till central venous access secured		
STEROIDS		refractory to adequate fluids and vasopressors	For adults with septic shock & ongoing requirement for vasopressor we suggest using IV corticosteroid		
ANTIBIOTICS	One or more antibiotics active against presumed pathogen Combination therapy (double coverage) for neutropenic patients and pseudomonas	Initial broad spectrum antibiotics (ex: vancomycin + piperacillin-tazobactam) Against combined therapy (i.e. do not double cover pseudomonas) May use procalcitonin to guide de-escalation	For adults with possible septic shock or high likelihood of sepsis we recommend administering antimicrobials immediately, ideally within 1 hr. of recognition. For those with possible sepsis- we suggest a time limited course of rapid investigation & if concern for infection persist provided antimicrobials in 3 hrs. For patients at high risk of MRSA we recommend empiric antimicrobials with MRSA coverage. We suggest against empiric		
SOURCE CONTROL	Achieve within 12 hours, if feasible	Achieve as soon as medically and logically feasible	with MRSA coverage not using if at low risk.		
VENTILATOR		idal volume RDS (P/F <150 in 2017 guideliens)	No change from 2016 No change from 2016		
	no recommendation	Against high frequency oscillatory ventilation (HFOV)	No change from 2016		
	weak recommendation for noninvasive ventilation in select patients with sepsis induced ARDS	Unable to make recommendation on noninvasive ventilation	For adults with sepsis induced ARDS we suggest using VV ECMO when conventional MV fails in experience centers We suggest high flow NC over non-invasive		

Rhodes A, Evans LE, Alhazzani W, et al. Surviving Sepsis Campaign: International Guidelines for Management of Sepsis and Septic Shock: 2016. Crit Care Med [Internet] 2017;1.

SEP-1 Updates (Version 5.10 / Discharges 07/01/21)

- Broad Spectrum or Other Antibiotic Administration Documentation of administration of a broad spectrum OR other antibiotic within the specified time frame.
 - △ There are no longer antibiotic selection guidelines the list of acceptable antibiotics (both broad spectrum & antibiotic combination therapy) has been removed.
 - △ Any antibiotic given in the specified time frame is acceptable for the Broad Spectrum or Other Antibiotic Administration data element. 24hrs before or 3hrs after Severe Sepsis presentation

Antibiotics are Key

ORIGINAL ARTICLE

The Timing of Early Antibiotics and Hospital Mortality in Sepsis

Vincent X. Liu¹, Vikram Fielding-Singh², John D. Greene¹, Jennifer M. Baker¹, Theodore J. Iwashyna^{3,4}, Jay Bhattacharya⁵, and Gabriel J. Escobar¹

¹Kaiser Permanente Division of Research, Oakland, California; ²Department of Anesthesia and Perioperative Care, University of California San Francisco, San Francisco, California; ³Center for Clinical Management Research, VA Ann Arbor Health System, Ann Arbor, Michigan; ⁴Division of Pulmonary and Critical Care, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan; and ⁵Primary Care and Outcomes Research, Stanford University, Stanford, California

American Journal of Respiratory and Critical Care Medicine Volume 196 Number 7 | October 1 2017

Increased Time to Initial Antimicrobial Administration Is Associated With Progression to Septic Shock in Severe Sepsis Patients

Bristol B. Whiles, BS1; Amanda S. Deis, MS1; Steven Q. Simpson, MD2

Whiles BB et al Critical Care Medicine. April 2017. Vol 45 (4) Number 4

 Each elapsed hour between presentation and antibiotic administration was associated with a 9% increase in the odds of mortality with sepsis of all severity levels

- Each hour until initial antimicrobial administration was associated with a 8% increase in progression to septic shock.
- Patients who progressed to shock had significant increase in hospital LOS (18.7 days vs 9.66 days) and mortality (30.1% vs 7%)

1 vs 1-3hr Antibiotics

13 studies included

- \triangle 5 prospective longitudinal
- \triangle 8 retrospective cohorts
- 3 studies had high risk of bias
- Quality of evidence low

0 to 1 hour Anbitiotics		1 to 3 hour Ant	ibiotics		Odds Ratio		Odds Ratio	
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	Year	M-H, Random, 95% Cl
Puskarich 2011	11	65	35	158	1.9%	0.72 [0.34, 1.51]	2011	
Ferrer 2014	1512	4728	2155	7615	24.2%	1.19 [1.10, 1.29]	2014	+
Bloos 2014	65	186	86	249	5.8%	1.02 [0.68, 1.52]	2014	
De Groot 2015	46	330	47	336	5.0%	1.00 [0.64, 1.54]	2015	
Ryoo 2015	29	150	40	199	3.6%	0.95 [0.56, 1.62]	2015	
Drumheller 2016	16	90	46	180	2.6%	0.63 [0.33, 1.19]	2016	
Whiles 2017	55	450	142	1541	7.7%	1.37 [0.99, 1.91]	2017	
Filbin 2018	32	149	59	243	4.2%	0.85 [0.52, 1.39]	2018	
Alam 2018	31	281	16	230	2.7%	1.66 [0.88, 3.12]	2018	
Leisman 2019	1046	5399	699	3641	21.9%	1.01 [0.91, 1.13]	2019	+
Hwang 2019	20	178	159	1067	4.1%	0.72 [0.44, 1.19]	2019	
Peltan 2019	139	599	1082	5559	14.2%	1.25 [1.02, 1.53]	2019	+
Castano 2019	15	57	33	183	2.2%	1.62 [0.81, 3.27]	2019	
Total (95% CI)		12662		21201	100.0%	1.09 [0.98, 1.21]		()
Total events	3017		4599					
Heterogeneity: Tau ² =	0.01; Chi ² = 20.6	61, df = 12	(P = 0.06); ² = 4	2%				0.01 0.1 1 10 100
Test for overall effect:	Z=1.56 (P=0.1	2)						0.01 0.1 1 10 100 Favours (0 to 1 hour ABX) Favours (1 to 3 hour ABX)

Early Fluid Resuscitation is Key

Multicenter Implementation of a Treatment Bundle for Patients with Sepsis and Intermediate Lactate Values

Vincent X. Liu^{1,2}, John W. Morehouse², Gregory P. Marelich², Jay Soule², Thomas Russell², Melinda Skeath³, Carmen Adams³, Gabriel J. Escobar^{1,2}, and Alan Whippy²

¹Kaiser Permanente Division of Research, Oakland, California; ²The Permanente Medical Group, Oakland, California; and ³Kaiser Foundation Hospitals and Health Plan, Oakland, California

American Journal of Respiratory and Critical Care Medicine Volume 193 Number 11 June 1 2016

Patterns and Outcomes Associated With Timeliness of Initial Crystalloid Resuscitation in a Prospective Sepsis and Septic Shock Cohort*

Daniel E. Leisman, BS^{1,2,3}; Chananya Goldman, MD⁴; Martin E. Doerfler, MD^{4,5}; Kevin D. Masick, PhD⁶; Susan Dries, RN, PhD⁶; Eric Hamilton, BA⁶; Mangala Narasimhan, DO⁷; Gulrukh Zaidi, MD⁷; Jason A. D'Amore, MD¹; John K. D'Angelo, MD^{1,2}

Critical Care Med October 2017 • Volume 45 • Number 10

 Decrease in hospital mortality was observed primarily in patients with heart and/or kidney failure (p<0.04) who received at least 2 Liters fluid resuscitation for severe sepsis with lactate between 2.1-3.9

 Early fluid initiation (30-120 minutes) was associated with significantly lower hospital mortality, mechanical ventilation, ICU admission, LOS and ICU days & no harm seen to the patients

1 vs 1-3hr Antibiotics

13 studies included

- \triangle 5 prospective longitudinal
- \triangle 8 retrospective cohorts
- 3 studies had high risk of bias
- Quality of evidence low

0 to 1 hour Anbitiotics		1 to 3 hour Ant	3 hour Antibiotics Odds Ratio				Odds Ratio	
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	Year	M-H, Random, 95% Cl
Puskarich 2011	11	65	35	158	1.9%	0.72 [0.34, 1.51]	2011	
Ferrer 2014	1512	4728	2155	7615	24.2%	1.19 [1.10, 1.29]	2014	+
Bloos 2014	65	186	86	249	5.8%	1.02 [0.68, 1.52]	2014	-
De Groot 2015	46	330	47	336	5.0%	1.00 [0.64, 1.54]	2015	·
Ryoo 2015	29	150	40	199	3.6%	0.95 [0.56, 1.62]	2015	
Drumheller 2016	16	90	46	180	2.6%	0.63 [0.33, 1.19]	2016	
Whiles 2017	55	450	142	1541	7.7%	1.37 [0.99, 1.91]	2017	
Filbin 2018	32	149	59	243	4.2%	0.85 [0.52, 1.39]	2018	<u> </u>
Alam 2018	31	281	16	230	2.7%	1.66 [0.88, 3.12]	2018	<u>+</u>
Leisman 2019	1046	5399	699	3641	21.9%	1.01 [0.91, 1.13]	2019	+
Hwang 2019	20	178	159	1067	4.1%	0.72 [0.44, 1.19]	2019	
Peltan 2019	139	599	1082	5559	14.2%	1.25 [1.02, 1.53]	2019	+
Castano 2019	15	57	33	183	2.2%	1.62 [0.81, 3.27]	2019	
Total (95% CI)		12662		21201	100.0%	1.09 [0.98, 1.21]		
Total events	3017		4599					
Heterogeneity: Tau ² =		1, df = 12		2%				
Test for overall effect:								0.01 0.1 1 10 100 Favours [0 to 1 hour ABX] Favours [1 to 3 hour ABX]

Application of Fluid Resuscitation in Adult Septic Shock

User's Guide to the 2016 Surviving Sepsis Guidelines Dellinger, CCM published ahead of print 1-2017

Type of Fluid

SALT-ED and SMART Studies - RCT

SALT-ED

- \land 13,347 patients
- Saline vs. LR/Plasma-Lyte in non-critically ill
- Median fluids administered 1079 ml

Both demonstrated statistically significant incidence of acute kidney injury (AKI)

SMART

- ▲ 15,802 patients
- Saline vs. LR/Plasma-Lyte in critically ill
- Median fluids administered ~ 2.5 L
 - \triangle ~ 33% mechanical ventilation
 - \triangle ~ 25% vasopressors

Results: SALT-ED

Table 3. Clinical Outcomes According to Assigned Treatment Group in the Intention-to-Treat Analysis.

Outcome	Balanced Crystalloids (N = 6708)	Saline (N = 6639)	Adjusted Odds Ratio (95% Cl)≭	Adjusted P Value
Median hospital-free days to day 28 (IOR)	25 (22-26)	25 (22–26)	0.98 (0.92-1.04)	0.41
Major adverse kidney event within 30 days — no. (%)	315 (4.7)	370 (5.6)	0.82 (0.70–0.95)	0.01
Death — no. (%)	94 (1.4)	102 (1.5)	0.89	
New renal-replacement therapy — no./total no. (%)†	18/6582 (0.3)	31/6530 (0.5)	0.56	
Final serum creatinine ≥200% of baseline — no./total no. (%)†	253/6582 (3.8)	293/6530 (4.5)	0.84	
Stage 2 or higher acute kidney injury — no./total no. (%)†	528/6582 (8.0)	560/6530 (8.6)	0.91 (0.80–1.03)	0.14
In-hospital death — no. (%)	95 (1.4)	105 (1.6)	0.88 (0.66–1.16)	0.36

KIDNEY Injury Events!

Self et al NEJM. 2018:378;9

SMART Trial

Subgroup	Balanced Crystalloids	Saline				Odds Rat	io (95% C	1)	P Value	P Value fo Interaction
	no. of events,	/total no. (%)								
Unit										0.27
Medical	615/2735 (22.5)	659/2646 (24.9)			-			0.87 (0.77-0.99) 0.04	
Cardiac	202/1470 (13.7)	190/1501 (12.7)					•	1.10 (0.89-1.36) 0.38	
Neurologic	116/1440 (8.1)	141/1377 (10.2)			•			0.77 (0.59-0.99) 0.04	
Trauma	131/1640 (8.0)	142/1688 (8.4)			_		_	0.95 (0.74-1.21) 0.66	
Congital	75/657 (11.4)	70/648 (12.2)	_					0.02 (0.66 1.20) 0.66	
Sepsis										0.06
No	744/6775 (11.0)	756/6691 (11.3)					-	0.96 (0.86-1.07) 0.47	
Yes	395/1167 (33.8)	455/1169 (38.9)		-	•			0.80 (0.67-0.94) 0.01	
Traumatic brain injury						i				0.24
No	1034/7244 (14.3)	1118/7195 (15.5)				 ;		0.89 (0.81-0.98) 0.01	
Yes	105/698 (15.0)	93/665 (14.0)				1	•	- 1.09 (0.81-1.47) 0.58	
Categories of kidney function										0.19
Normal	476/5596 (8.5)	514/5561 (9.2)			-			0.91 (0.80-1.04) 0.16	
Acute kidney injury	315/574 (54.9)	316/537 (58.8)		-		•	-	0.85 (0.67-1.08) 0.18	
Chronic kidney disease	301/1388 (21.7)	307/1360 (22.6)			-	•		0.95 (0.79-1.13) 0.55	
Previous renal-replacement therapy	47/384 (12.2)	74/402 (18.4)	<i>←</i>	•		—		0.61 (0.41-0.91) 0.01	
Overall	1139/7942 (14.3)	1211/7860 (15.4)	0.5	0.6 ().7	1.0	1.2	0.91 (0.83-0.99) 0.04	
			Bala	nced C Bet	•	oids	Saline Better			

Secondary Analysis of SMART

15,802 patients enrolled in SMART

- 1,641 patients were admitted to the medical intensive care unit with a diagnosis of sepsis
- 217 patients (26.3%) in the balanced crystalloids group experienced 30-day in-hospital morality, compared with,
- ▲ 255 patients (31.2%) in the saline group

 \triangle (adjusted odds ratio, 0.74; 95% confidence interval, 0.59 – 0.93; p = 0.01)

Secondary Analysis of SMART

A Patients in the balanced group experienced a lower incidence of major adverse kidney events within 30 days

△ (35.4% vs 40.1%; OR 0.78; 95% Cl 0.63 – 0.97)

Greater number of vasopressor-free days

 \triangle (20 ± 12 vs 19 ± 13; OR 1.25; 95% CI 1.02 – 1.54)

A Renal replacement therapy-free days

△ (20 ± 12 vs 19 ± 13; OR 1.35 [1.08 – 1.69])

Balanced Crystalloids vs Saline in Critically III Adults: A meta-analysis

	Balanced	l Fluid	Salir	ne		Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% C	I M-H, Random, 95% Cl
1.4.1 Randomized C	ontrolled Tr	ials					
Annane 2013	22	72	275	1035	9.5%	1.15 [0.80, 1.65]	
Semier 2017	72	520	68	454	11.6%	0.92 [0.68, 1.26]	+
Semier 2018	928	7942	975	7860	23.2%	0.94 [0.87, 1.02]	•
Verma 2016	5	33	2	34	0.8%	2.58 [0.54, 12.36]	
Young 2014	3	32	4	33	1.0%	0.77 [0.19, 3.19]	
Young 2015	87	1152	95	1110	12.8%	0.88 [0.67, 1.17]	-+
Subtotal (95% CI)		9751		10526	58.9%	0.95 [0.88, 1.02]	
Total events	1117		1419				
Heterogeneity: Tau ² =	= 0.00; Chi ^a =	3.03, df	= 5 (P =	0.70); P	= 0%		
Test for overall effect:	Z = 1.42 (P	= 0.15)					
1.4.2 Observational	Studies						
Jaynes 2018	37	201	38	209	8.2%	1.01 [0.67, 1.52]	+
Kuca 2017	25	425	19	158	5.0%	0.49 [0.28, 0.86]	
Raghunathan 2014	659	3365	768	3365	22.8%	0.86 [0.78, 0.94]	
Shaw 2015	16	1558	51	1558	5.2%	0.31 [0.18, 0.55]	
Subtotal (95% CI)		5549		5290	41.1%	0.64 [0.41, 0.99]	
Total events	737		876				
Heterogeneity: Tau ² =	0.15; Chi ² =	16.52, 0	ff=3(P=	0.0009); l ^a = 82%		
Test for overall effect:	Z = 1.99 (P	= 0.05)					
Total (95% CI)		15300		15816	100.0%	0.86 [0.75, 0.99]	♦ <u>Str</u>
Total events	1854		2295				Ja
Heterogeneity: Tau ³ =	0.02; Chi* =	24.20, 0	ff=9{P=	0.004)	² = 63%		Ra
Test for overall effect	-			,			0.01 0.1 1 Se Favours Balanced Fluid Favors Sali
Test for subgroup diff	•		df = 1 (P	= 0.09).	I ² = 66.0%	6	Favours Balanced Fluid Favors Sali Se
							Sh
							Ve
							W
							Yo

	Balanced Fluid		ced Fluid Saline		Risk Ratio		Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% Cl	M-H, Fixed, 95% Cl
Jaynes 2018	42	201	63	209	4.0%	0.69 [0.49, 0.97]	
Raghunathan 2014	301	3365	348	3365	22.4%	0.86 [0.75, 1.00]	-
Semler 2017	97	520	87	454	6.0%	0.97 [0.75, 1.26]	+
Semler 2018	807	7942	858	7860	55.4%	0.93 [0.85, 1.02]	•
Shaw 2015	69	1558	85	1558	5.5%	0.81 [0.60, 1.11]	
Verma 2016	9	32	6	33	0.4%	1.55 [0.62, 3.85]	
Waters 2001	4	33	5	33	0.3%	0.80 [0.24, 2.72]	
Young 2015	102	1067	94	1025	6.2%	1.04 [0.80, 1.36]	$\langle + \rangle$
Total (95% CI)		14718		14537	100.0%	0.91 [0.85, 0.98]	
Total events	1431		1546				
Heterogeneity: Chi ² =	6.29, df = 7	(P = 0.5	i1); I² = 09	6			0.01 0.1 1 10 100
Test for overall effect:	Z = 2.68 (P	= 0.007)				Favors Balanced Fluid Favors Saline

Hammond DA, Lam SW, Rech MA, et al Ann Pharmacother. 2020 Jan;54(1):5-13.

BaSICS Trial: Saline vs Balanced Solution

- ▲ 75 ICU's, 11,052 patients
- Double blind factorial RCT

Admitted to ICU

- \triangle 1 factor for worse outcomes
- \triangle Required 1 bolus
- \triangle Remain in ICU > 24hrs
- Measure difference in mortality & secondary outcomes

Figure 3. Cumulative incidence of the Primary Outcome of 90-Day Survival for a Balanced Solution vs Saline Solution (0.9% Sodium Chloride)

For regular bolus of ICU patients, either fluid is likely safe. However we don't have enough data on patients who required a significant amount of volume resuscitation on fluid to use

How do you know if your hypotensive patient is a fluid responder?

OR

INFUSION OF 100/10

Social media poll:

Which measures do you routinely use to determine if the patient needs fluid?

Instagram poll 4/26/2021 6,082 responses

Why B/P is <u>NOT</u> a good predictor of fluid responsiveness?

A The ABP response to intravenous volume expansion is unpredictable

 \triangle Some pts exhibit an increase – others do not

Fluid administration if aimed to restore and maintain ABP could lead to the following:

 \triangle Unnecessary fluid overload

 \triangle Delayed vasoactive therapy

 \triangle Increased mortality

\Lambda BP a late sign of hypovolemia

FRESH Trial

- 13 US and UK Hospitals
- \land Non-blinded RCT
- \land n = 124 patients
 - \triangle 83 treatment vs. 41 Usual Care
 - \triangle 2:1 enrollment
- \land Enrolled in the ER
 - \triangle Refractory septic shock
 - \triangle < 3L of fluid administered

- PLR with dynamic measure of SV change using Bioreactance
 - △ Used to guide decision of fluid vs.
 vasopressors for clinical hypoperfusion
 - △ Over the next 72 hours of care, or ICU discharge
- ▲ Hypoperfusion defined as:
 - \triangle MAP < 65
 - \triangle Persistent hyperlactemia
 - △ Cryptic shock lactate > 4 without hypotension

Primary Endpoint

Decreased 72-hour Fluid Balance (p=0.02)

 \triangle Treatment Group: 0.65 L +/- 2.85 L

 \triangle Control Group: 2.02 L +/- 3.44 L

▲ Favoring Treatment Group: -1.37 L

• 43% fluid responsive on initial PLR

- 33% fluid responsive between 48 72 hours
- 18% never fluid responsive

Secondary Endpoints

- **Renal Replacement Therapy** (RRT) p = 0.04
 - \triangle Treatment Group 5.1%
 - \triangle Control Group 17.5 %

ICU LOS p = 0.11

 \triangle Treatment Group 3.31

 \triangle Control Group 6.22

Mechanical Ventilation p = 0.04

 \triangle Treatment Group 17.7%

 \triangle Control Group 34.1%

Discharge Home p = 0.035

 \triangle Treatment Group 63.9%

 \triangle Control Group 43.9 %

SEP-1 v 5.11 Fluid Volume Requirement Starting 1/1 2022

- Solumes ordered that equals 30mL/kg
- Mithin 10% less than 30mL/kg is acceptable
- order for less than 30ML per kilogram of crystalloid fluids if the volume is specified in order in one of the following reasons is documented
 - \triangle concern for volume overload
 - △ blood pressure stabilized with lesser volume
 - \bigtriangleup end stage heart failure
 - \triangle end stage renal disease
 - \triangle a portion of the crystalloid volume was administered as colloids

Adjunctive Therapies

Adjunctive Corticosteroid Treatment in Critically III Patients With Septic Shock-ADRENAL Trial

A RCT-3800 patients

- △ 5 countries (Australia, NZ, Saudi Arabia, UK & Denmark
- △ Tx: 200mg infusion hydrocortisone vs placebo
- \triangle No tapering done/no stim test Inclusion:
 - > 18 years
 - Proven or strong suspicion of infection
 - Shock or pressors for a minimum of 4 hours
 - > 2 SIRS criteria
 - Mechanical ventilation
 - Etomidate native

Secondary Benefits

- Faster time to shock reversal
- D/C from ICU faster
- Less PRBC's
- Faster time to extubation

Venkatesh B, et al. N Engl J Med 2018 Mar 1;378(9):797-808

Figure 2. Kaplan-Meier Analysis by Randomization Group

Vitamins RCT: Vitamin C, Hydrocortisone and Thiamine vs. Hydrocortisone Alone

- A RCT 10 ICU's in Australia, New Zealand and Brazil
- 216 patients/Sepsis 3 definition for Septic Shock

- Intervention group-109
 - IV vitamin C (1.5g q 6 hrs), IV
 hydrocortisone (50mg q 6 hrs) &
 thiamine (200 mg every 12 hrs)
- Control group-107
 - IV hydrocortisone (50 mg q 6 hrs) until shock resolution or 10 days

Results

Time alive and vasopressor free up to day 7

- Intervention group 122.1 hrs
- Control group 124.6 hrs p=.83

No difference in any secondary outcomes Limitations:

- Open label
- Under powered to detect difference in mortality
- 24 hrs must meet SEP 3 criteria
- Median time to first dose of Vitamin C was 12.1 hrs from ICU admission

VICTAS Trial: Vitamin C, Thiamine and Steroid in Treatment of Sepsis

▲ 43 Hospitals

- △ ED or ICU enrollment
- \bigtriangleup Patients with sepsis induced cardiac or respiratory dysfunction
- \bigtriangleup 500 patients funding withheld (study stopped)/Prior to COVID
- \triangle Vasopressors
 - HFNC, NIV, IMV
- △ Vit C 1.5 gm, thiamine (100mg) & steroids (50mg) q 6 vs. placebo
- \triangle Infusion 96hrs, d/c ICU or death
- Outcome Measurements
 - \triangle Vasopressor free days
 - \triangle Ventilator free days
 - \triangle 30-day mortality

Results

- Open label steroids administration 32% in both groups
- No difference in VFD or vasopressor free days
- No difference in 30-day mortality

Clover Study: Coming Attraction Crystalloid Liberal or Vasopressors Early Resuscitation in Sepsis

Hypothesis

- A Restrictive (vs liberal) fluid treatment strategy during the 1st 24hr of resuscitation for sepsis-induced hypotension will reduce 90-day in hospital mortality
 - △ Conservative (vasopressor first followed by rescue fluids)
 - △ liberal (fluids followed by rescue vasopressors)

Method

- Multicenter, randomized prospective phase 3 trial
- △ Intervention: protocolized fluid titration strategies for up to 24 hours
- ▲ Sample: 2,320 patients planned to enrollment
- A Primary outcome: 90 day inpatient mortality
- ▲ 50 Hospitals—acute and critical care (part of Petal Network)

Enrollment to be completed by June 2021

Does Compliance with the Bundle Make a Difference?

Changes in Bundle Compliance & Mortality with a PI Program Mortality

6 Hour Bundle Compliance

	ES	95% CI	Sig.		
Berg 2013	7.39	0.29, 185.86	0.224		-
Castellanos-Ortega 2010	11.98	1.63, 88.13	0.015		
De Miguel-Yanes 2009	38.52	2.22,668.17	0.012		
Ferrer 2008	2.01	1.42, 2.83	0.000		
Girardis 2009	2.40	0.57, 10.04	0.231		
Jeon 2012	8.14	4.64, 14.27	0.000		
Kuan 2013	6.00	2.79, 12.91	0.000		
Levy 2010	2.23	1.75, 2.84	0.000		
MacRedmond 2010	10.51	3.32, 33.31	0.000		
McKinley 2011	8.95	4.74, 16.88	0.000		
Memon 2012	5.81	2.23, 15.14	0.000		
Na 2012	7.84	3.75, 16.36	0.000		
Nguyen HB 2007	78.66	4.53, 1366.74	0.003		
Noritomi 2014	10.41	6.22, 17.41	0.000		
Plambech 2012	0.54	0.07, 4.10	0.554		
Schramm (a) 2011	4.16	2.70, 6.41	0.000		
Schramm (b) 2011	7.98	5.32, 11.99	0.000		
Shiramizo 2011	2.48	0.93, 6.61	0.069		
Tromp (a) 2010	3.33	1.29, 8.58	0.013		
Tromp (b) 2010	1.17	0.69, 1.98	0.559		
Van Zanten 2014	2.05	1.15, 3.65	0.015		
Wang 2013	5.65	0.69, 46.11	0.106		
Westphal 2011	0.84	0.47, 1.50	0.559		
Overall (random-effects model) I2 = 84.37%, p=0.000	4.15	2.87,6.00	0.000		
				0.01	

10000

Damiani E, Donati A, Serafini G, et al*LoS One*. 2015;10(5):e0125827. Published 2015 May 6. doi:10.1371/journal.pone.0125827

Effect of Bundle Compliance with SEP-1 on Mortality among Medicare Beneficiaries with Sepsis

- ▲ A propensity score matched cohort study
 - △ Standard & stringent
- △ 3241 hospitals from 10/01/2015 to 03/31/2017
- Compliance was completion of all SEP-1 elements
- 2 matches completed to evaluate population level effects
 - △ Standard: 122,870 compliant matched to those care were non-compliant
 - △ Stringent:107,016 compliant matched with those care were non-compliant
- A Outcome Measures:
 - \triangle 30-day mortality
 - \triangle Changes in LOS

Townsend SR, et al. Chest. Article in Press September 2021

Adjusted & Unadjusted Impact of Bundle Element Compliance on Mortality

Bundle: Treatment Section and Elements	No. of Eligible Cases	Pass Rate (%)	Compliant 30-d Mortality (%)	Noncompliant 30-d Mortality (%)	Conditional Adjusted OR	Conditional Adjusted OR 95% CI	<i>P</i> Value
Complete SEP-1 bundle ^a	333,770	42.1	21.7	30.3	0.829	0.812-0.864	< .001
Severe sepsis 3 h: initial lactate level	159,646	86.0	26.2	32.0	0.772	0.743-0.802	< .001
Severe sepsis 3 h: antibiotic administration	137,252	88.5	25.8	29.0	0.844	0.798-0.892	< .001
Severe sepsis 3 h: blood culture	121,454	90.0	25.3	30.8	0.867	0.827-0.908	< .001
Severe sepsis 3-h bundle	159,646	68.5	25.3	30.8	0.803	0.779-0.828	< .001
Severe sepsis 6-h bundle: repeat lactate level	74,349	62.6	27.0	26.9	0.885	0.851-0.921	< .001
Shock 3-h bundle: crystalloid fluid administration	24,357	62.2	34.1	34.8	0.915	0.855-0.980	.011
Shock 6 h: vasopressors	5,332	77.3	39.3	29.1	1.317	1.126-1.541	< .001
Shock 6 h: reassessment	9,931	38.1	38.0	36.5	1.012	0.920-1.114	.807
Shock 6 h: vasopressors and reassessment	4,122	42.5	40.8	38.3	1.014	0.879-1.169	.846
Shock 6-h bundle	11,141	34.0	38.0	35.3	1.048	0.955-1.149	.326

TABLE 3] Element-Level Unadjusted and Adjusted Conditional Treatment Effects Based on the Hierarchical Generalized Linear Model Logistic Regression Model

^aData inclusive from quarter 4, 2015, to quarter 1, 2017; data in all other rows represent quarter 4, 2015, to quarter 2, 2016.

Compliance with SEP-1 Decrease Mortality

 ▲ Compliant Care 30-day Mortality
 ▲ 21.81% Non-Compliant Care 30-day Mortality
 27.48%

ARR = 5.67%	RR = .794	NNT = 17.65		
(95% Cl,5.33-6.0;p < .001)	(95% CI <i>,</i> 0.783- 0.805)	(95% CI <i>,</i> 16.66-18.76)		

Compliant care: LOS 5 days vs 6 days (p<.001)

Kathleen M. Vollman MSN, RN, CCNS, FCCM, FCNS, FAAN Clinical Nurse Specialist / Educator / Consultant ADVANCING NURSING kvollman@comcast.net Northville Michigan www.Vollman.com

Kathleen Vollman