Understanding The Why, The How and Care of the Acute Respiratory Distress Syndrome (ARDS) Patient in the Prone Position

Kathleen M. Vollman MSN, RN, CCNS, FCCM, FCNS, FAAN Clinical Nurse Specialist / Educator / Consultant ADVANCING NURSING kvollman@comcast.net Northville, Michigan www.vollman.com

- Consultant-Michigan Hospital Association Keystone Center
- Subject matter expert HRET: CAUTI, CLABSI, HAPU, Sepsis, Safety culture
- Consultant and speaker bureau:
 - Stryker
 - Eloquest Healthcare
- Baxter Healthcare Advisory Board

Polling Question

What is your position?

- 1. Critical care nurse
- 2. Progressive Care/Telemetry nurse
- 3. Educator
- 4. Chest Physiotherapist
- 5. Manager/Director
- 6. Clinical Nurse Specialist/Nurse Practitioner
- 7. Intensivist
- 8. Quality

Objectives

- Discuss the physiologic rationale and the evidence for use of the prone position in patients with ARDS
- Identify evidence-based strategies for determining when to turn, how to turn, and how long to allow patients to remain in the prone position
- Outline strategies for preventing complications like ventilated associated pneumonia (VAP) and pressure Ulcers with evidencebased strategies such as oral hygiene and protective dressings

Prone Positioning Incidence

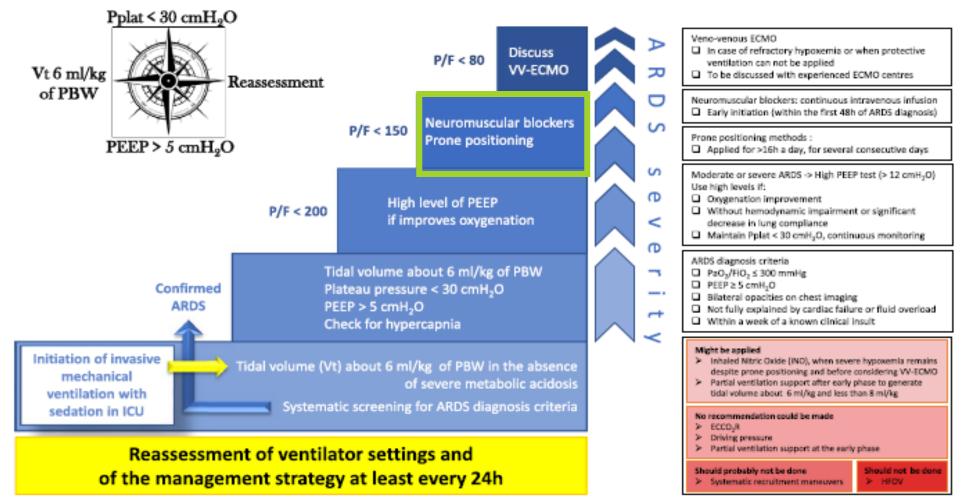
Prone positioning (PP) was only used in 16.3% of patients with severe ARDS in the LUNG SAFE study

Bellaini G, et al. JAMA, 2016;315(8):788-800

European Prevalence Study (APRONET): Use of PP in mild 5.9%, moderate 10.3%, severe 32.9% ARDS

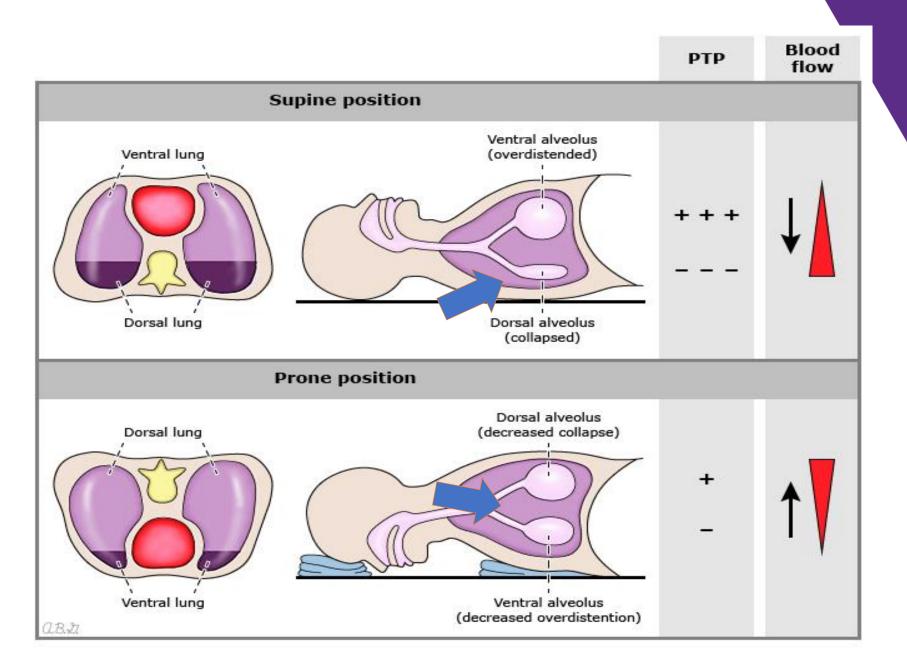
Guerin C, et al. Intensive Care Med, 2018;44(1):22-37

28% of ARDS COVID patients in the ICU are positioned prone. Moore Z, et al. J Wound Care. 2020;29(6):312-320.

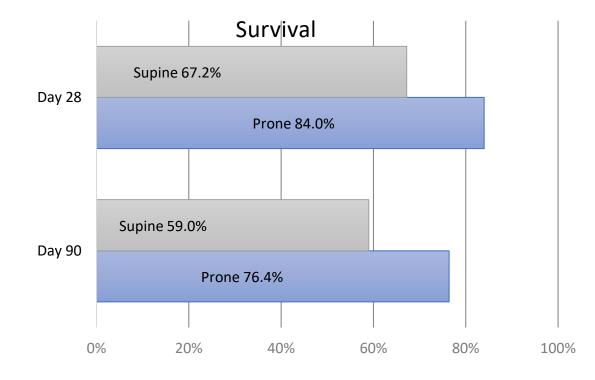


The Berlin ARDS Definition

TIMING	Within 1 week of a known clinical insult or new/worsening respiratory symptoms								
CHEST IMAGING (X-RAY OR CAT SCAN)	Bilateral opacities—not fully explained by effusions, lobar/lung collapse, or nodules								
ORIGIN OF EDEMA	Respiratory failure not fully explained by cardiac failure or fluid overload; need objective assessment (eg, echocardiography) to exclude hydrostatic edema if no risk factors present								
	MILD	MODERATE	SEVERE						
OXYGENATION	<200 PaO_2/FiO_2 or <300 with PEEP/CPAP 								


Ferguson ND, et al. *Intensive Care Med*. 2012;38(10):1573-1582. Dharia A, et al. *ICU Director*. 2012;3(6):287-292.

Early management of ARDS in 2019


Why Prone Positioning?

- Improves dependent aeration recruiting alveoli
- Reduces hyperinflation of nondependent regions dramatically
- Results in more homogenous lung aeration which reduces regional shear strain...less ventilator-induced lung injury (VILI)
- Decreases barotrauma and atelectrauma by recruiting and reducing overdistension that occurs with higher positive end-expiratory pressure (PEEP)
- \downarrow PACO2 relates to net increase in recruitment / \downarrow in dead space
- Drains secretions

https://www.uptodate.com/contents/prone-ventilation-for-adult-patients-with-acuterespiratory-distress-syndrome/print

Proning Severe ARDS Patients

In a randomized, controlled trial of 466 patients with severe ARDS, survival was significantly higher at 28 and 90 days in the prone position group

NNT=6

Guerin C, et al. N Engl J Med. 2013368(23):2159-2168.

Prone Positioning Meta-Analysis

9 randomized controlled trials / 2,242 patients

OUTCOMES	DECREASED 30-DAY	REDUCED 60-DAY AND	REDUCED 28-30-DAY
	MORTALITY	90-DAY MORTALITY	MORTALITY
PATIENT POPULATION	ARDS patients with a PaO ₂ /FiO ₂ ratio ≤100 mmHg	ARDS patients ventilated with PEEP ≥10 cmH ₂ O	ARDS patients who had duration of proning >12 hours per day (n = 1,067, RR = 0.73, 95% CI = 0.54 to 0.99; P = 0.04)

Used with Permission Advancing Nursing LLC Copyright © 2017 AACN and Advancing Nursing LLC

Case Study

- Mr. Green is a 65-year-old male 90kg male 5 feet 10 inches. Patient has a 2-day history of fever and chills. His past medical hx is Hypertension and coronary artery disease. He presents to the Emergency room with a fever 39.5°C complaining of inability to catch his breath.
- ▲ His initial vital signs:
 - \triangle HR 120/min
 - \triangle RR 40/min
 - △ BP 90/65
 - \bigtriangleup O2 sat of 92% on room air.
 - \triangle He is placed on 50% mask

- △ ABG: (On 50% mask)
 - pH 7.20
 - PaCO2 28,
 - PaO2 60,
 - SaO2 93%
 - Bicarb 13
- \triangle Extremely labored breathing
- \triangle Lactic acid: 3.5
- △ WBC's: 24,000 with a left shift
- △ Platelets: 75,000
- △ Electrolytes WNL
- △ Chest x-ray shows bilateral infiltrates

What should happen next?

Polling Question

▲ What should be the next step in Mr. Green's care?

- 1. Initiate non-invasive ventilation
- 2. Initiate intubation
- 3. Change to 100% non-rebreather
- 4. Initiate high flow nasal cannula (HFNC)

Case Study

- Intubated and transferred to the ICU
- Settings on mechanical ventilation
 - △ Vt 528, AC 28, FiO2 of 1.0, PEEP 8cm, Plat pressures 38cm H20
- ▲ ABG's: 7.34, 35, 70, 94, 18
 - \triangle P/F ratio is 70
- A PEEP increased incrementally over next 12 hours to 14cm
- ▲ FiO2 at 80%
- ▲ Plateau pressures 35cm H2O mmHg

- \Lambda ABGs:
 - △ Ph 7.35
 - △ PaCO2 34
 - △ PaO2 60
 - △ SaO2 91
 - \triangle Bicarb 20
 - \triangle P/F ratio 75

What should be our next step?

Polling Question

- ▲ What should be the next step in Mr. Green's care?
 - 1. Switch to High Frequency Oscillation Ventilation (HFOV)
 - 2. Initiate Extra Corporeal Membrane Oxygenation (ECMO
 - 3. Initiate prone positioning
 - 4. Switch to Airway Pressure Release Ventilation (APRV)

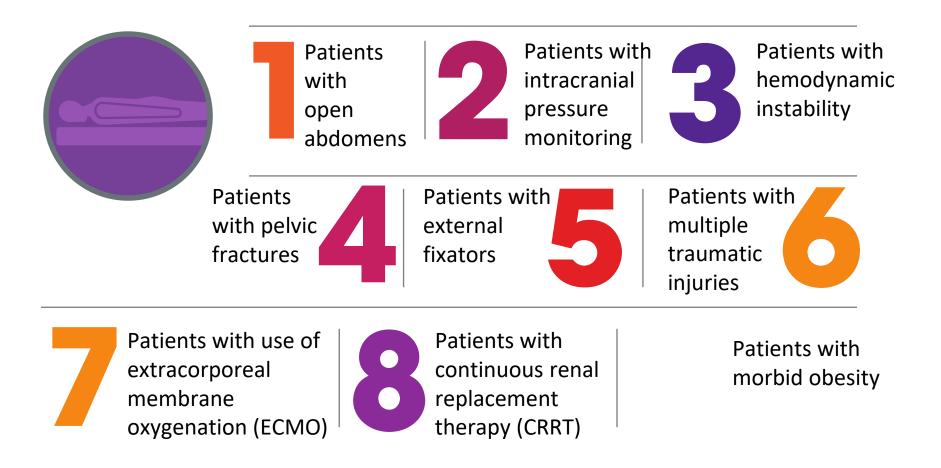
Who to Place in Prone Position?

- ▲ Patients with severe ARDS (PaO₂/FiO₂ <150 mmHg)
 - △ Per ATS/SCCM Mechanical Ventilation for ARDS guidelines, a strong recommendation for prone positioning for >12 hours /day
- ▲ Patients early in the course (12–24 hours)

Who Not to Place in Prone Position?

Patients with facial/neck trauma or spinal instability

Patients with recent sternotomy or large ventral-surface burn


Patients at high risk of requiring **CPR** or defibrillation

Relative Considerations

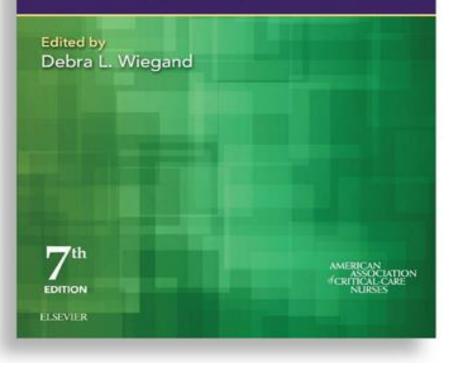
- ENT: raised intraocular pressure or recent ophthalmic surgery, facial trauma, or recent oral maxillofacial surgery in last 15 days
- Cardiac: severe hemodynamic instability, unstable cardiac rhythms, ventricular assist device, intra-aortic balloon pump, recent sternotomy, new pacemaker < 48 hours</p>
- A Pulmonary: hemoptysis, unstable airway (double lumen endotracheal tube), new tracheostomy < 15 days, bronchopleural fistula, lung transplant</p>
- Abdomen: second or third trimester pregnancy, grossly distended abdomen, ischemic bowel, abdominal compartment syndrome, recent abdominal surgery or stoma, extensive inguinal or abdominal soft tissue injury
- Musculoskeletal: chest wall abnormalities, kyphoscoliosis, or advanced arthritis
- ▲ Skin: burns on more than 20% body surface

Patients Who Have Been Placed in the Prone Position Successfully

Vollman KM. Crit Care Nurs Clin North Am. 2004;16(3):319-336. Schiller HJ, et al. Chest. 1996;110:1425.29. Goettler CE, et al. Crit Care. 2002;6(5):452-455 Mitchell DA, et al. AACN Advanced Critical Care, 2018;29(4):415-425

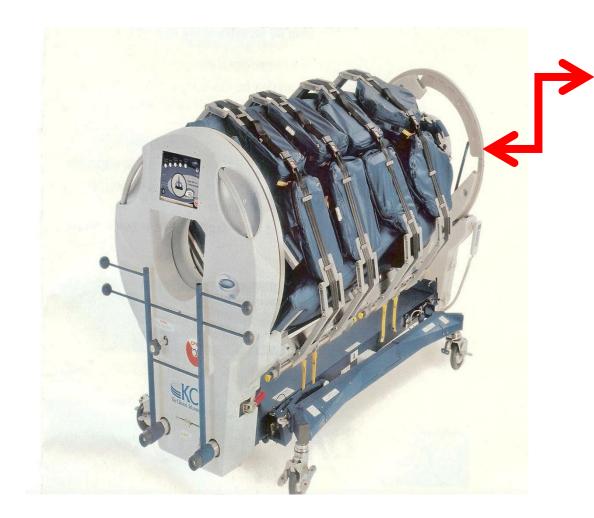
Used with Permission Advancing Nursing LLC Copyright © 2017 AACN and Advancing Nursing LLC

Pre-Prone Position Process


- Patient and family education
- Gather staff and supplies, obtain pre prone measurements
- Preoxygenate, empty stomach (1hr), suction endotracheal tube/oral cavity,
- Secure the endotracheal tube and lines (remove ET holders if in use)
- Position tubes inserted above the waist to the **top of the bed**
- Position tubes inserted below the waist to the **foot of the bed** (except chest tubes)

- Empty ileostomy/colostomy bags before the turn
- Placement of prophylactic dressings in high pressure/shear risk areas (forehead, chin, chest, elbow, pelvic, knees, dorsal feet)
- Ensure the tongue is inside patient's mouth and eyes are closed
- Develop an exit strategy for instability while in the prone position

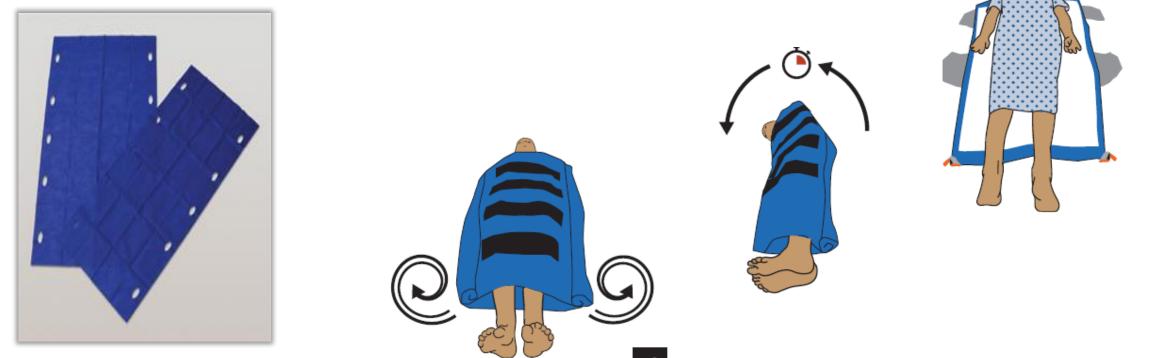
AACN Procedural Manual-7th ed


- Chapter 18: Pronation Therapy
- \Lambda Authors
 - △ Kathleen Vollman
 - \triangle Jan Powers
 - \triangle Sharon Dickinson

AACN Procedure Manual for High Acuity, Progressive, and Critical Care

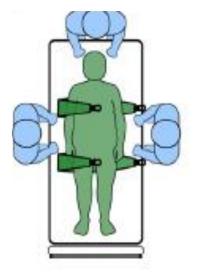
Rotoprone

Prone positioner No longer sold

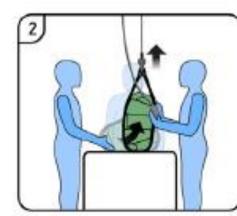


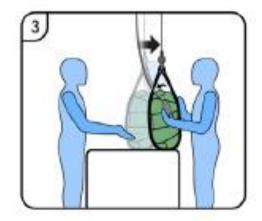
Manual Proning

Prone Positioning with Positioning Sheet


Disposable Slide Sheets

Prevalon TAP Patient Repositioning System




Lift Assisted Prone Positioning

Wiggermann N, et al. Human Factors 2020 in press

Burrito Method Using a Turn & Position System

Chest and/or pelvic support can be done by placing a pillow/wedge before completing the turn.

Positioning Schedule & Maintenance Care

- Consider every 16hrs uninterrupted (more frequent turn back may cause decruitment)
- Obtain post prone measurements
- A Restart feeding
- Move head slightly every hour or q 2-ensure ET tube is not kinked
- A ROM of arms every 2 hours/change position of the arms (Swim position)
- Support feet in correct anatomical alignment
- △ If hemodynamic monitoring, level the zero-reference point at the right atrium
- Consider time periods in reverse trendelenburg to address facial edema and reduce risk of vomiting
- A Frequent oral hygiene and suctioning and as needed

Significance of VAP in COVID Patients: A Systematic Review and Case Series

- Case series & systematic review (5 studies)
- COVID and Non COVID studies that measured VAP using the same methodology
- Outcome measures
 - △ Mortality during hospitalization
 - \triangle Secondary
 - Mortality at ICU
 - LOS
 - VAP
- Results: Mortality at 28 days

	COVID	-19	Non-COVII	0-19		Odds Ratio	Odds Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	M-H, Random, 95% CI
Hue 2020	13	38	4	36	17.1%	4.16 [1.21, 14.33]	
Razazi 2020	36	82	25	82	34.1%	1.78 [0.94, 3.39]	
Rouze 2021	166	568	132	482	48.8%	1.09 [0.84, 1.43]	
Total (95% CI)		688		600	100.0%	1.63 [0.87, 3.02]	P=.12
Total events	215		161				
Heterogeneity: Tau2 -	= 0.19; C	hi ² = 5.	74, df = 2 (F	9 = 0.06	$i); I^2 = 65$	%	
Test for overall effect	: Z = 1.5	4 (P = 0)).12)				0.1 0.2 0.5 1 2 5 10 Non-COVID-19 COVID-19

	COVID	-19	Non-COV	D-19		Odds Ratio	Odds Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	M-H, Random, 95% CI
lue 2020	29	38	15	36	13.9%	4.51 [1.66, 12.25]	
Luyt 2020	43	50	28	45	13.9%	3.73 [1.37, 10.14]	
Maes 2021	39	81	19	144	20.8%	6.11 [3.19, 11.71]	
Razazi 2020	58	90	36	82	21.7%	2.32 [1.25, 4.28]	P=.0001
Rouze 2021	205	568	107	482	29.7%	1.98 [1.50, 2.60]	- P=.0001
Fotal (95% CI)		827		789	100.0%	3.17 [1.94, 5.18]	•
Total events	374		205				
Heterogeneity: Tau ²	= 0.19; Cl	$hi^2 = 13$	2.04, df = 4	(P = 0.0)	(2); $I^2 = 6$	7%	
Test for overall effect	t: Z = 4.60	0 (P < 0	0.00001)				0.1 0.2 0.5 1 2 5 10 Non-COVID-19 COVID-19

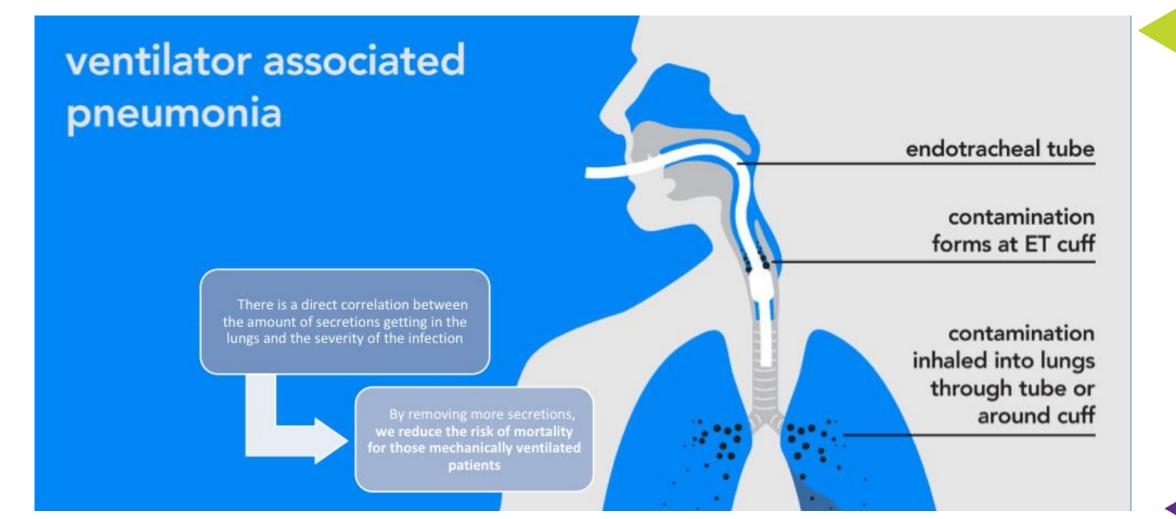
26%

45%

ICU Mortality

	COVID	-19	Non-COV	D-19		Odds Ratio	Odds	Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% Cl	M-H, Fixe	ed, 95% CI
Hue 2020	14	38	7	36	3.2%	2.42 [0.84, 6.95]	-	
Luyt 2020	17	50	18	45	8.8%	0.77 [0.34, 1.78]		
Maes 2021	31	81	30	144	9.4%	2.36 [1.29, 4.30]		
Razazi 2020	37	82	27	82	10.5%	1.67 [0.89, 3.16]	-	P=.01
Rouze 2021	164	568	125	482	68.0%	1.16 [0.88, 1.52]	-	-
Total (95% CI)		819		789	100.0%	1.33 [1.07, 1.66]		•
Total events	263		207					
Heterogeneity: Chi ² =	7.80, df	= 4 (P)	= 0.10); I ² :	= 49%				
Test for overall effect	: Z = 2.59	9 (P = 0).010)				0.1 0.2 0.5 Non-COVID-19	1 2 5 10 COVID-19

VAP Rates



What to Remember

- All patients with SARS-CoV-2 are at increased risk of bacterial infections
- 2. Infections in COVID-19 patients are often antibiotic resistant
- 3. The risk of bacterial infections is concentrated in the critically ill and mechanically ventilated population.
- 50% of mechanically ventilated COVID-19 patients contract
 Ventilator-Associated
 Pneumonia (VAP)
- 2. COVID-19 + VAP = Increased Mortality
- Thus VAP prevention in COVID-19 patients = decreased Mortality

What to Remember

What Does the Evidence Tell Us?

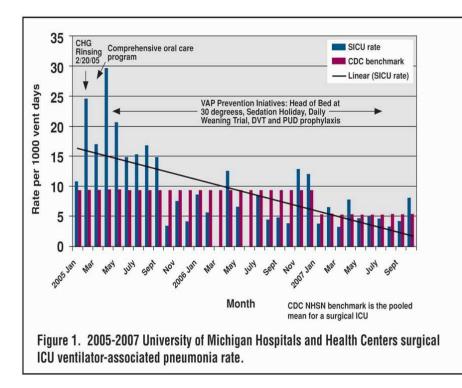
Brush CHG rinse alone CHG rinse in Combination Swab/Clean/Moisturize Suction

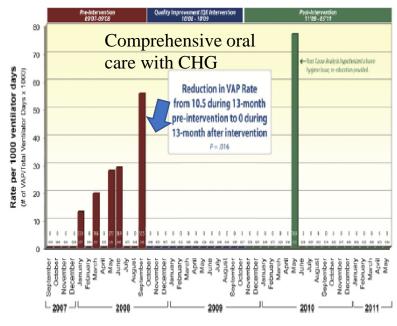
All of the above

Comprehensive Oral Care Program

Literature Review: Oral Care Impact of VAP

Comprehensive Oral Care:


- Reduction in VAP from 5.6 to 2.2 (Schleder B. et al. J Advocate Health 2002;4(1):27-30)
- Reduction in VAP from 4.10 (2005) to (2.15) in 2006 with addition of CPC & comprehensive oral care. Vent bundle & rotational therapy already being performed
- Reduction in VAP from 12.0 to 8.0 (p=.060) with 80% compliance, vent bundle already being preformed, 1538 patients randomized to control or study group, Additional outcomes; < vent days (p=.05), < ICU LOS (p=.05) < time to VAP (p= <.001) & reduction in mortality (p=.05) (Garcia R et al AJCC, 2009;18:523-534)


Literature Review: Oral Care Impact of VAP

Comprehensive Oral Care & CHG:

• Reduction in VAP to zero for 2 years, vent bundle, mobility, oral care & CHG with comprehensive education preformed (Murray TM et al. AACN Advanced Critical Care. 2007;18(2):190-199)

Dickinson S et al. SCCM Critical Connections, 02/2008

Ventilator-Associated Pneumonia

Heck K, et al. American Journal of Infection Control 40 (2012) 877-9

Does CHG Oral Care Impact VAP and Mortality

- Klompas Study-Retrospective review
 - \triangle Single center
 - △ Impact of vent bundle (5536 patients)
 - △ Connection of CHG with increase mortality on patients vented > 3 days

- Deschepper study: Retrospective Review
 - △ Hospital wide retrospective cohort (82,274 patients)
 - △ 11,133 patients received CHG oral care
 - △ Divided into low exposure-cumulative dose < 300 mg (8080 pts)
 - \triangle High exposure > 300 mg (3053 pts)
 - △ 300 mg CHG is equivalent to 1 bottle of 250ml of oral care soln at .12%-covers 5-6 days at 3 times a day)
- In the sickest group CHG low or high exposure was not a risk for increased mortality
- Showed improvement on mortality in ICU patients ventilated < 96hrs and not harm if vented > 96 hrs
- Greatest risk for mortality increase is use in non-ICU patients.

Cochrane Meta-Analysis 2020 of RCT's

NNT

12

Analysis 1.1. Comparison 1: Chlorhexidine versus placebo/usual care, Outcome 1: Incidence of VAP

			Placebo/Us	ual care		Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	M-H, Random, 95% CI
1.1.1 Chlorhexidine solution	versus placel	oo (no tool	hbrushing in	either gro	up)		
Fu 2019	7	40	37	40	9.0%	0.19 [0.10 , 0.37]	_ —
Meidani 2018	6	50	15	50	7.6%	0.40 [0.17, 0.95]	
Grap 2011 (1)	7	21	10	18	8.6%	0.60 [0.29 , 1.25]	
Ozcaka 2012	12	29	22	32	10.6%	0.60 [0.37 , 0.98]	
Bellissimo-Rodrigues 2009	16	64	17	69	9.7%	1.01 [0.56 , 1.83]	_
Tuon 2017	4	8	2	8	4.5%	2.00 [0.50 , 8.00]	
Subtotal (95% CI)		212		217	50.0%	0.57 [0.33 , 1.00]	
Total events:	52		103				•
Heterogeneity: Tau ² = 0.33; Cl	hi² = 17.96, df	= 5 (P = 0	003); I ² = 72 ⁴	%			
Test for overall effect: Z = 1.9	7 (P = 0.05)						
1.1.2 Chlorhexidine gel versu	is placebo (ne	o toothbru	shing in eith	er group)			
Cabov 2010	1	17	6	23	2.6%	0.23 [0.03 , 1.70]	
Koeman 2006	13	127	23	130	9.4%	0.58 [0.31 , 1.09]	_ _
Subtotal (95% CI)		144		153	12.0%	0.53 [0.29, 0.97]	•
Total events:	14		29				•
Heterogeneity: Tau ² = 0.00; Cl	hi² = 0.77, df :	= 1 (P = 0.3	8); I² = 0%				
Test for overall effect: Z = 2.0	4 (P = 0.04)						
1.1.3 Chlorhexidine solution	versus placel	o (toothb:	ushing both	groups)			
Tantipong 2008	5	58	10	52	6.6%	0.45 [0.16 , 1.23]	
Scannapieco 2009 (2)	14	97	12	49	8 9%		-
Berry 2011 (3)						0.59 [0.30, 1.18]	
	4	33	1	43	2.4%		
Subtotal (95% CI)	4	33 188	1	43 144	2.4%	0.59 [0.30 , 1.18] 5.21 [0.61 , 44.47] 0.74 [0.29 , 1.89]	
	4		1 23		2.4%	5.21 [0.61 , 44.47]	
Subtotal (95% CI) Total events:	23	188	23		2.4%	5.21 [0.61 , 44.47]	•
Subtotal (95% CI)	23 hi ^z = 4.30, df :	188	23		2.4%	5.21 [0.61 , 44.47]	•
Subtotal (95% CI) Total events: Heterogeneity: Tau ² = 0.36; CI Test for overall effect: Z = 0.6	23 hi ^z = 4.30, df = 4 (P = 0.53)	188 = 2 (P = 0.1	23 2); I² = 53%	144	2.4%	5.21 [0.61 , 44.47]	
Subtotal (95% CI) Total events: Heterogeneity: Tau ² = 0.36; CI Test for overall effect: Z = 0.6 1.1.4 Chlorhexidine gel versu	23 hi ^z = 4.30, df = 4 (P = 0.53)	188 = 2 (P = 0.1	23 2); I² = 53%	144	2.4% 17.8%	5.21 [0.61, 44,47] 0.74 [0.29, 1.89]	
Sublotal (95% CI) Total events: Heterogeneity: Tau ² = 0.36; CI Test for overall effect: Z = 0.6 1.1.4 Chlorhexidine gel versu Kusahara 2012a (4)	23 hi ^z = 4.30, df : 4 (P = 0.53) 15 placebo (to	188 = 2 (P = 0.1 othbrushi	23 2); I ² = 53%	144 ps)	2.4% 17.8% 9.8%	5.21 [0.61, 44,47] 0.74 [0.29, 1.89] 1.02 [0.57, 1.82]	
Subiotal (95% CI) Total events: Heterogeneity: Tau ² = 0.36; Cl Test for overall effect: Z = 0.6 1.1.4 Chlorhexidine gel versu Kusahara 2012a (4) Meinberg 2012	23 hi ^z = 4.30, df = 4 (P = 0.53) us placebo (to 15	188 = 2 (P = 0.1 othbrushi 46 28	23 2); I ² = 53% ng both grou 16	144 ps) 50	2.4% 17.8% 9.8% 10.4%	5.21 [0.61, 44,47] 0.74 [0.29, 1.89] 1.02 [0.57, 1.82] 1.40 [0.84, 2.35]	
Sublotal (95% CI) Total events: Heterogeneity: Tau ² = 0.36; CI Test for overall effect: Z = 0.6 1.1.4 Chlorhexidine gel versu Kusahara 2012a (4)	23 hi ^z = 4.30, df = 4 (P = 0.53) us placebo (to 15	188 = 2 (P = 0.1 othbrushi 46	23 2); I ² = 53% ng both grou 16	144 ps) 50 24	2.4% 17.8% 9.8% 10.4%	5.21 [0.61, 44,47] 0.74 [0.29, 1.89] 1.02 [0.57, 1.82]	
Subiotal (95% CI) Total events: Heterogeneity: Tau ² = 0.36; Cl Test for overall effect: Z = 0.6 1.1.4 Chlorhexidine gel versu Kusahara 2012a (4) Meinberg 2012 Subiotal (95% CI) Total events:	23 hi ^z = 4.30, df = 4 (P = 0.53) 15 15 18	188 = 2 (P = 0.1 othbrushi 46 28 74	23 2); I ² = 53% ng both grou 16 11 27	144 ps) 50 24	2.4% 17.8% 9.8% 10.4%	5.21 [0.61, 44,47] 0.74 [0.29, 1.89] 1.02 [0.57, 1.82] 1.40 [0.84, 2.35]	
Subiotal (95% CI) Total events: Heterogeneity: Tau ² = 0.36; Cl Test for overall effect: Z = 0.6 1.1.4 Chlorhexidine gel versu Kusshara 2012a (4) Meinberg 2012 Subiotal (95% CI)	23 hi ^z = 4.30, df + 4 (P = 0.53) ns placebo (to 15 18 33 hi ^z = 0.67, df =	188 = 2 (P = 0.1 othbrushi 46 28 74	23 2); I ² = 53% ng both grou 16 11 27	144 ps) 50 24	2.4% 17.8% 9.8% 10.4%	5.21 [0.61, 44,47] 0.74 [0.29, 1.89] 1.02 [0.57, 1.82] 1.40 [0.84, 2.35]	
Subiotal (95% CI) Total events: Heterogeneity: Tau ² = 0.36; CI Test for overall effect: Z = 0.6 1.1.4 Chlorhexidine gel versu Kusahara 2012a (4) Meinberg 2012 Subiotal (95% CI) Total events: Heterogeneity: Tau ² = 0.00; CI Test for overall effect: Z = 1.0	23 hi ^z = 4.30, df + 4 (P = 0.53) ns placebo (to 15 18 33 hi ^z = 0.67, df =	188 = 2 (P = 0.1 othbrushi 46 28 74 = 1 (P = 0.4	23 2); I ² = 53% ng both grou 16 11 27	144 ps) 50 24 74	2.4% 17.8% 9.8% 10.4% 20.2%	5.21 [0.61, 44,47] 0.74 [0.29, 1.89] 1.02 [0.57, 1.82] 1.40 [0.84, 2.35] 1.22 [0.83, 1.79]	
Subiotal (95% CI) Total events: Heterogeneity: Tau ² = 0.36; CI Test for overall effect: Z = 0.6 1.1.4 Chlorthexidine gel versu Kusahara 2012a (4) Meinberg 2012 Subtotal (95% CI) Total events: Heterogeneity: Tau ² = 0.00; CI Test for overall effect: Z = 1.0 Total (95% CI)	23 hi ^z = 4.30, df = 4 (P = 0.53) is placebo (to 15 18 33 hi ^z = 0.67, df = 0 (P = 0.32)	188 = 2 (P = 0.1 othbrushi 46 28 74	23 2); I ² = 53% ng both grou 16 11 27 1); I ² = 0%	144 ps) 50 24 74	2.4% 17.8% 9.8% 10.4%	5.21 [0.61, 44,47] 0.74 [0.29, 1.89] 1.02 [0.57, 1.82] 1.40 [0.84, 2.35]	
Subiotal (95% CI) Total events: Heterogeneity: Tau ² = 0.36; CI Test for overall effect: Z = 0.6 1.1.4 Chlorthexidine gel versu Kusshara 2012a (4) Meinberg 2012 Subtotal (95% CI) Total events: Heterogeneity: Tau ² = 0.00; CI Test for overall effect: Z = 1.0 Total (95% CI) Total events:	23 hi ² = 4.30, df # 4 (P = 0.53) is placebo (to 18 33 hi ² = 0.67, df f 0 (P = 0.32)	188 = 2 (P = 0.1 othbrushi 46 28 74 = 1 (P = 0.4 618	23 2); I ² = 53% ng both grou 16 11 27 (1); I ² = 0%	144 ps) 50 24 74 588	2.4% 17.8% 9.8% 10.4% 20.2%	5.21 [0.61, 44,47] 0.74 [0.29, 1.89] 1.02 [0.57, 1.82] 1.40 [0.84, 2.35] 1.22 [0.83, 1.79]	
Subiotal (95% CI) Total events: Heterogeneity: Tau ² = 0.36; CI Test for overall effect: Z = 0.6 1.1.4 Chlorhexidine gel versu Kusahara 2012a (4) Meinberg 2012 Subtotal (95% CI) Total events: Heterogeneity: Tau ² = 0.00; CI Test for overall effect: Z = 1.0 Total (95% CI)	23 hi ² = 4.30, ff # 4 (P = 0.53) is placebo (to 15 18 hi ² = 0.67, ff 0 (P = 0.32) 122 hi ² = 35.29, df	188 = 2 (P = 0.1 othbrushi 46 28 74 = 1 (P = 0.4 618	23 2); I ² = 53% ng both grou 16 11 27 (1); I ² = 0%	144 ps) 50 24 74 588	2.4% 17.8% 9.8% 10.4% 20.2%	5.21 [0.61, 44,47] 0.74 [0.29, 1.89] 1.02 [0.57, 1.82] 1.40 [0.84, 2.35] 1.22 [0.83, 1.79] 0.67 [0.47, 0.97]	0.02 0.1 Favours placebolu c

Analysis 3.1. Comparison 3: Toothbrushing versus no toothbrushing, Outcome 1: Incidence of VAP

tudy or Subgroup	-		THE RECEIPT	rushing		Risk Ratio	Risk Ratio		
	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	M-H, Random, 95% CI		
.1.1 Powered toothbrus	ah + usual o	care (± CI	IX) versus u	isual care (± CHX)				
obo 2009 (1)	15	74	18	73	23.5%	0.82 [0.45 , 1.50]	-		
ao 2011 (2)	4	28	14	25	12.7%	0.26 [0.10 , 0.67]			
ubtotal (95% CI)		102		98	36.2%	0.49 [0.16 , 1.53]	-		
otal events:	19		32				-		
leterogeneity: Tau ² = 0.5	2; Chi ² = 4	.05, df = 1	(P = 0.04); I	² = 75%					
est for overall effect: Z =	= 1.23 (P =	0.22)							
.1.2 Toothbrush + CHX	(versus Cl	HX alone							
orente 2012	21	217	24	219	25.7%	0.88 [0.51, 1.54]	-		
e Lacerda 2017	17	105	28	108	26.4%	0.62 [0.36 , 1.07]			
ubtotal (95% CI)		322		327	52.1%	0.74 [0.50 , 1.09]	•		
otal events:	38		52				•		
leterogeneity: Tau ² = 0.0	0; Chi ² = 0	.77, df = 1	(P = 0.38); I	² = 0%					
est for overall effect: Z =	= 1.53 (P =	0.13)							
.1.3 Toothbrush + povi	done iodin	e versus p	ovidone iodi	ne alone					
ong 2012	4	31	11	.30	11.6%	0.35 [0.13 , 0.98]			
ubtotal (95% CI)		31		30	11.6%	0.35 [0.13, 0.98]	-		
otal events:	4		11				•		
leterogeneity: Not applic	able								
est for overall effect: Z =	= 1.99 (P =	0.05)							
otal (95% CI)		455		455	100.0%	0.61 [0.41 , 0.91]			
otal events:	61		95						
leterogeneity: Tau ² = 0.0	8; Chi ² = 6	.71, df = 4	(P = 0.15); I	² = 40%		0.0	01 0.1 1 10		
est for overall effect: Z =	= 2.44 (P =	0.01)					Toothbrushing No toothbru		
est for subgroup differer	nces: Chi² =	: 2.03, df =	2 (P = 0.36)	, I² = 1.5%					

Analysis 1.2. Comparison 1: Chlorhexidine versus placebo/usual care, Outcome 2: Mortality

	Chlorhexidine		Placebo/usual care			Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% (CI M-H, Random, 95% CI
1.2.1 Chlorhexidine solution	versus placel	o (no tool	thbrushing in	either gro	up)		
Bellissimo-Rodrigues 2009	. 34	64	32	69	30.1%	1.15 [0.81 , 1.	61]
Ozcaka 2012	17	29	19	32	20.1%	0.99 [0.65, 1.	50]
Meidani 2018	4	50	5	50	2.2%	0.80 [0.23 , 2.	81]
Fu 2019	3	40	7	40	2.2%	0.43 [0.12 , 1.	54]
Subtotal (95% CI)		183		191	54.6%	1.03 [0.80 , 1.	33]
Total events:	58		63				
Heterogeneity: Tau ² = 0.00; Ch	ni² = 2.46, df :	= 3 (P = 0.4	48); I ² = 0%				
Test for overall effect: Z = 0.21	l (P = 0.83)						
1.2.2 Chlorhexidine gel versu	is placebo (n	toothbru	shing in eith	er group)			
Cabov 2010	0	17	0	23		Not estima	ble
Subtotal (95% CI)		17		23		Not estima	ble
Total events:	0		0				
Heterogeneity: Not applicable							
Test for overall effect: Not app	licable						
1.2.3 Chlorhexidine solution							_
Tantipong 2008	36	102	37	105	25.9%		45] -
Scannapieco 2009	16	116	8	59	5.7%		
Subtotal (95% CI)		218		164	31.6%	1.00 [0.72 , 1.	40] 🔶
Total events:	52		45				
Heterogeneity: Tau ² = 0.00; Ch		= 1 (P = 0.9)	97); I² = 0%				
Test for overall effect: $Z = 0.03$	3 (P = 0.98)						
1.2.4 Chlorhexidine gel versu	is placebo (to	othbrushi	ng both grou	ps)			
Kusahara 2012a (1)	8	46	12	50	5.5%	0.72 [0.33 , 1.	61]
Meinberg 2012	13	28	9	24	8.3%	1.24 [0.65 , 2.	38]
Subtotal (95% CI)		74		74	13.8%	1.00 [0.59 , 1.	68] 🔶
Total events:	21		21				Ţ
Heterogeneity: Tau ² = 0.01; Ch	ni² = 1.06, df =	= 1 (P = 0.3)	30); I ² = 6%				
Test for overall effect: Z = 0.01	1 (P = 0.99)						
Total (95% CI)		492		452	100.0%	1.02 [0.84 , 1.	23]
Total events:	131		129				
Heterogeneity: Tau ² = 0.00; Ch	ni² = 3.50, df =	= 7 (P = 0.8	34); I ² = 0%				0.002 0.1 1 10 500
Test for overall effect: Z = 0.17	7 (P = 0.86)						Favours chlorhexidine Favours placebo/
Test for subgroup differences:	Chi ² = 0.02. d	f = 2 (P =)	0.99), $I^2 = 0\%$				-

Impact on Mortality

It is More than CHG

- .12% CHG application 2x daily is a small part of the oral care equation
- It is the comprehensive and frequent delivery of oral hygiene, including toothbrushing and cleansing

Maintenance Care

Consider floating the nasogastric tube to prevent pressure injuries

- Taping
 - Obtain 3 inches of 1 inch wide paper tape
 - Make two ¼ inch cuts 1 inch apart on each side of tape

Step 2 : Secure to Nose

Maintenance Care–Other Things to Consider

- Consider pillows, use of liter bags of IV fluids or fluidizer positioner to align the head and neck
- ▲ Use silicone preventive dressing under ECMO cannulas

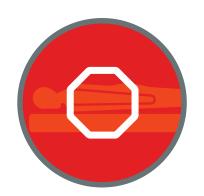


Image courtesy of Sharon Dickinson

When to Stop Prone Positioning?

Research supports stopping prone positioning when PaO_2/FiO_2 has remained >150 mmHg 4 hours after supinating (with PEEP <10 cm H₂O and FiO₂ <0.6)

If there is no response after 48 hours, question whether prone positioning should continue

Polling Question

- Mhat complications have occurred with use of the prone position at your hospital? Check all that apply
 - 1. Airway obstruction
 - 2. Accidental extubation
 - 3. Pressure injuries
 - 4. Loss of invasive lines
 - 5. Loss of tubes
 - 6. Cardiac arrest
 - 7. Hemodynamic instability
 - 8. Ocular injuries
 - 9. Brachial plexus injuries
 - 10. VAP

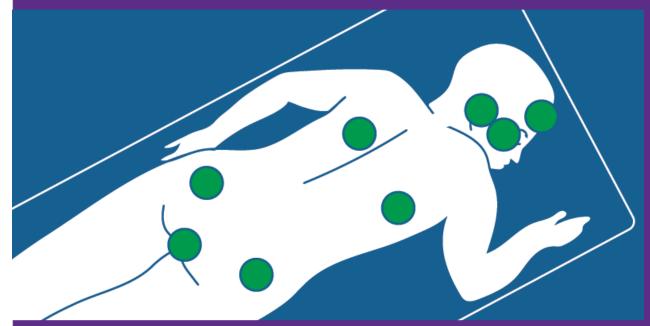
				Treatment Effect (Random-Effect Model)				Heterogeneity	
Adverse Events	No.ofTrials Reporting the Outcome	Events/Prone	Events/ Supine	OR (95% CI)	р	Number Needed to Treat/Number Needed to Harm	F (%)	р	
Ventilator- associated pneumonia	6	120/567	128/513	0.76 (0.44–1.33)	0.343	26	34.4	0.192	
Pressure ulcers	6	294/698	218/646	1.49 (1.18–1.89)	0.001	12	0.0	0.617	
Major airway problem∾	9	255/1,104	180/1,063	1.55 (1.10-2.17)	0.012	16	32.7	0.167	
Unplanned extubation	7	113/1,091	98/1,050	1.17 (0.80–1.73)	0.421	98	25.5	0.234	
Selective intubation	2	12/642	5/615	2.73 (0.29–25.46)	0.378	95	55.9	0.132	
Endotracheal tube obstruction	4	130/823	77/802	2.16 (1.53–3.05)	< 0.001	16	0.0	0.580	
Loss of venous or arterial access	4	36/407	22/397	1.34 (0.29–6.26)	0.712	30	75.5	0.007	
Thoracostomy tube dislodgement or kinking	4	14/407 11 .	14/397 .9% con	1.14 (0.35–3.75) nplication ra	0.827 ate	1,154	42.6	0.175	
Pneumothorax	4	29/513	33/462	0.77 (0.46-1.30)	0.333	67	0.0	0.528	
Cardiac arrest	3	104/718	119/675	0.74 (0.47-1.17)	0.197	32	30,3	0.238	
Tachyarrhythmia or bradyarrhythmia	3	115/663	102/634	1.08 (0.78–1.50)	0.643	80	8.8	0.334	

Lee JM, et al. Crit Care Med, 2014;42(5):1252-1262

Does your ICU have a process for assessing P/F ratios routinely?

	Mild	Moderate	Severe
Oxygenation	< 200 PaO ₂ /FiO ₂	< 100 PaO ₂ /FiO ₂	$\leq 100 \text{ PaO}_2/\text{FiO}_2$
	or	or	with PEEP
	< 300 with PEEP/ CPAP >	<u>< 200 with PEEP</u>	<u>></u> 5 cm H ₂ O
	5 cm H ₂ O	<u>></u> 5 cm H ₂ O	

Pressure Injury Risk in the Prone Patient


\Lambda Incidence

- △ Prone position for ARDS increased odds of pressure injury
 - Ranges 1.22-1.37 (95% CI 1.05 to 1.79)
 - PI 37% more common in prone pts
- \bigtriangleup High rates being reported in COVID patients

Pressure Injury Prevention: Prone Positioning

- A Redistribution surface
- Positioning devices to offload pressure points (Do not use ring or donut-shaped positioning devices)
- Avoid shear and friction during the turning process
- Small micro turns while prone/swimmer position shifts q 2-4 hrs
- Assess skin with when doing small positioning shifts
- A Placement of prophylactic dressings over all potential pressure injury risk areas

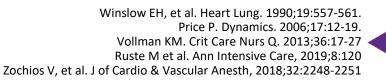
Green areas represent pressure sources while lying prone

Prophylactic Dressings for Prone Position PI Prevention PRESSURE POINTS Forehead Cheeks Nose Chin Clavicle Elbow Chest Genitalia Anterior pelvic bones > Knees > Dorsal feet /shoulder /breasts /penis (iliac crests, ischium, symphysis pubis) /patella & toes

• Under/around medical devices

Upon returning to supine position, assess skin including under the dressings

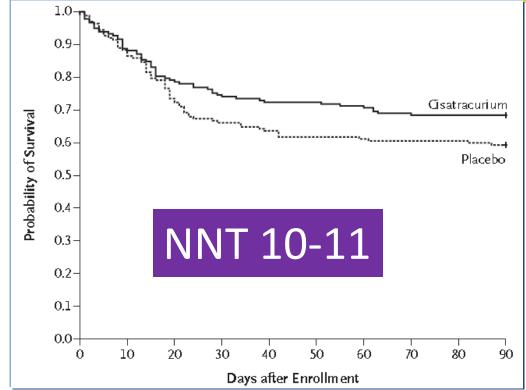
https://cdn.ymaws.com/npiap.com/resource/resmgr/online_store/posters/npiap_pip_tips_-proning_202.pdf NPIAP 2020



The Role of Hemodynamic Instability in Positioning

- Lateral turn results in a 3%-9% decrease in SVO₂, which takes 5-10 minutes to return to baseline
- A Appears the act of turning has the greatest impact on any instability seen
- Minimize factors that contribute to imbalances in oxygen supply and demand
- A Factors that put patients at risk for intolerance to positioning:
 - \triangle Elderly
 - \triangle Diabetes with neuropathy
 - \triangle Prolonged bed rest
 - △ Low hemoglobin and cardiovascular reserve
 - \triangle Prolonged gravitational equilibrium

Right ventricular function improves in PP/ \uparrow preload & CI

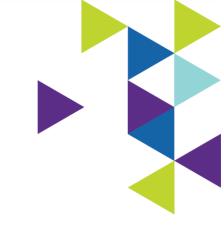


Neuromuscular Blockade in Early ARDS

- Multicenter, double blind trial
- A 340 patients with ARDS within 48hrs of admitted to ICU
- ▲ ARDS defined as P/F ratio of < 150 ≥ PEEP 5cm & Vt of 6-8 ml/kg PBW
- A Randomized to receive 48hrs of cisatracurium or placebo
- △ Study did not use train of 4

Results:

- △ After risk adjustment NMB group showed improved mortality at 90 days (31.6% vs. 40.7%)
- \triangle Also significant at 28 days
- \triangle **\uparrow**time off vent
- △ No difference in muscle weakness


ROSE Trial: Re-evaluation of Systemic Early Neuromuscular Blockade

- A Protocol: moderate to severe ARDS < 48hrs / P/F ratio < 150 with > PEEP 8 cm
- Cisatracurium for 48hr or usual care
- A Protocol changed mid-study, removed RM

The ROSE trial at 90-day follow-up in patients with moderate-tosevere ARDS, 42.5% of the intervention group and 42.8% of the control group died before hospital discharge (between group difference -0.3%, 95% CI -6.4 to 5, *P*=0.93), -study stopped early.

Angus D, et al NEJM May 19th 2019

Prone Positioning used 15.8%. Equal use in both groups

Summary

- Use the prone positioning
- Implement early—don't wait
- ▲ Develop a process or protocol to minimize complication risk
- A Training all providers to mastery is critical

Kathleen M. Vollman MSN, RN, CCNS, FCCM, FCNS, FAAN Clinical Nurse Specialist / Educator / Consultant ADVANCING NURSING kvollman@comcast.net Northville, Michigan www.vollman.com

Kathleen Vollman