ARDS: Unlocking the Eight Key Components to Care

Kathleen M. Vollman MSN, RN, CCNS, FCCM, FCNS, FAAN Clinical Nurse Specialist / Educator / Consultant ADVANCING NURSING kvollman@comcast.net Northville, Michigan www.vollman.com

ADVANCING NURSING LLC 2023

Disclosures

- Consultant-Michigan Hospital Association Keystone Center
- ▲ Subject matter expert on CAUTI, CLABSI, HAPI, Sepsis, Safety culture for HRET/AHA
- ▲ Consultant and speaker bureau
 - \triangle Stryker's Sage business
 - \triangle Potrero Medical
- ▲ Baxter Advisory Board

Objectives

- Discuss strategies for early recognition of patients with ARDS and explain the pathophysiologic manifestations seen in ARDS
- Apply the 8 P's of supportive evidence-based care practices for patients with ARDS
- Summarize the latest research that demonstrate an impact on short- and long-term outcomes for the ARDS patient.

Surviving

Thriving

Post Intensive Care Syndrome/ Post COVID Long Haulers

Harvey M, Davidson J. Crit Care Med, 2016;44(2):381-385

The Berlin ARDS Definition

Ferguson ND, et al. Intensive Care Med. 2012;38(10):1573-1582. Dharia A, et al. ICU Director. 2012;3(6):287-292.

Used with Permission Advancing Nursing LLC Copyright © 2017 AACN and Advancing Nursing LLC

A New Global Definition of ARDS

ARDS New Global Definition 2023

• new definition criteria	Classification									
	Mild Moderate Severe									
Time to instalation	Up to seven days - known risk fator(s)									
Pulmonary edema	Not explained by cardiogenic edema or intravascular volume overload									
Radiologic features	Bilateral infiltrates on chest X-ray or CT or <u>lung ultrasound (by a trained professional)</u> (not explained by nodules, pleural effusion or atelectasis)									
Hypoxemia PaO ₂ /FIO ₂ **	201-300 with NIV/CPAP PEEP ≥ 5* or HFNO > 30I/min	101 - 200 com PEEP ≥ 5	<mark>≤ 100</mark> com PEEP ≥ 5							
Hypoxemia SpO ₂ /FIO ₂	≤ 315 with SpO ₂ ≤ 97%									

@ xlung www.xlung.net

Am J Respir Crit Care Med 2023;207:A6229

PaO₂/FiO₂ Ratio

- \Lambda User friendly tool
- Crude assessment of the severity of lung injury
- Used in the definition of ARDS
 - \triangle Mild
 - \triangle Moderate
 - \triangle Severe

PaO2 = 70 torr FiO2 = 60% or .60 P/F Ratio = 70/.60 Answer: 117

This Photo by Unknown Author is licensed under CC BY-NC-ND

A New Global Definition of ARDS

ARDS New Global Definition 2023

• new definition criteria	Classification								
	Mild Moderate Severe								
Time to instalation	Up to seven days - known risk fator(s)								
Pulmonary edema	Not explained by cardiogenic edema or intravascular volume overload								
Radiologic features	Bilateral infiltrates on chest X-ray or CT or <u>lung ultrasound (by a trained professional)</u> (not explained by nodules, pleural effusion or atelectasis)								
Hypoxemia PaO ₂ /FIO ₂ **	201-300 with NIV/CPAP PEEP ≥ 5* or HFNO > 30I/min	101 - 200 com PEEP ≥ 5	<mark>≤ 100</mark> com PEEP ≥ 5						
Hypoxemia SpO ₂ /FIO ₂	≤ 315 with SpO₂ ≤ 97%								

@ xlung www.xlung.net

Am J Respir Crit Care Med 2023;207:A6229

Sub Phenotypes-Help Direct Therapy

- A Hypoinflammatory
- A Hyperinflammatory

Sub-Phenotypes: Hypoinflammatory Hyperinflammatory: ↑ mortality/Vent days Matthay MA, 2019; Primer 5;18. www.nature.com

Epidemiology, Patterns of Care & Mortality in ICU's in 50 Countries

- Large observational study to understand the global impact of severe acute respiratory failure (LUNG SAFE)
- ▲ Winter 2014: Four consecutive weeks
- 459 ICUs from 50 countries across 5 continents
- A Primary outcome measure: ARDS incidence
 - △ Secondary measures: assessment of clinical recognition, application of vent management, use of adjunct interventions and outcomes for ARDS

ARDS Prevalence & Mortality By

Type of ARDS	Prevalence	Hospital Mortality
Mild	30%	34.9%
Moderate	46.6%	40.3%
Severe	23.4%	46.1%

Greater incidence, 10% of ICU admissions and, under recognized and higher mortality ARDS occurs in 1 of every 10 patients in ICU's around the world & 23% of all mechanically ventilated patients

Bellaini G, et al. JAMA, 2016;315(8):788-800

Mortality for ARDS in US stagnate Higher rates: 个in Blacks & Hispanics 个Males and low-income patients

Parcha V, et al. Chest 2020 22:s0012-3692

Predisposing Conditions Associated with ARDS

Direct Injury

- Inhalation injuries
- 🛆 Pneumonitis
- \Lambda Virus
- A Pulmonary Contusion
- 🛆 Oxygen Toxicity
- 🛆 Drugs:
- \Lambda Radiation

Sub-Phenotypes: Hypoinflammatory Hyperinflammatory: ↑ mortality/Vent days Matthay MA, 2019; Primer 5;18. www.nature.com

Indirect Injury

- \Lambda Sepsis
- \Lambda Hyperinflammatory
- Multiple Transfusions (TRALI)
- \Lambda Shock
- 🛕 Multisystem Trauma
- \Lambda Pulmonary Embolism
- 🛕 Fat Embolism
- \Lambda Pancreatitis
- Intracranial Hypertension
- \Lambda Burns
- Bypass Surgery
- \land DIC

Pathophysiologic Characteristics in ARDS

- A permeability defect described as a diffuse, non-uniform injury to the alveolar epithelium and alveolar capillary membrane (mediator/biotrauma & ventilator induced)
- Ventilator induced lung injury: overdistenison injury caused by higher tidal volumes and higher transpulmonary pressures. This may induce cytokine release
- Direct injury to pulmonary circulation (mediator/biotrauma & ventilator induced)
- \triangle Defect in the body's ability to transport and utilize O₂ at tissue level

Blondonnet R, e tal. Disease Markers, 2016; open access Manimala R, et al. <u>Current Respiratory Medicine Reviews</u>, 2015;11(3):231-235 Walkey AJ, et al. AnnalsATS, 2017;14(Supp 4): s271-s279

The Eight P's of ARDS Treatment

- ▲ PREVENTION
- \land PEEP
- \Lambda PUMP
- \Lambda PIPES
- \Lambda PARALYSIS
- ▲ POSITION
- \Lambda PROTEIN
- \Lambda PROTOCOL
- 9th : PHARMACOLOGY

PREVENTION

Preventing the Invasion

- A VAE/VAC/IVAC & Probable VAP-Increase risk of death in COVID
- CLA-BSI-higher rates seen nationally with COVID
- 🛆 SSI
- \Lambda CA-UTI

Pickens CO, et al. *medRxiv*. 2021:2021.2001.2012.20248588 <u>https://www.tarrn.org/covid</u> Rouze A, et al. Intensive Care Med. 2021 Feb;47(2):188-198 Buetti N, et al. Intensive Care Med. 2021 https://link.springer.com/article/10.1007/s00134-021-06346-w

Images purchase on Shutterstock

Significance of VAP in COVID Patients: A Systematic Review and Case Series

- Case series & systematic review (5 studies)
- COVID and Non COVID studies that measured VAP using the same methodology
- Outcome measures
 - Mortality during hospitalization
 - △ Secondary
 - Mortality at ICU
 - LOS
 - VAP
- Results: Mortality at 28 days

	COVID	-19	Non-COV	D-19		Odds Ratio	Odds	Ratio	
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	M-H, Rand	lom, 95% CI	
Hue 2020	29	38	15	36	13.9%	4.51 [1.66, 12.25]			
Luyt 2020	43	50	28	45	13.9%	3.73 [1.37, 10.14]			
Maes 2021	39	81	19	144	20.8%	6.11 [3.19, 11.71]			
Razazi 2020	58	90	36	82	21.7%	2.32 [1.25, 4.28]			D- 0001
Rouze 2021	205	568	107	482	29.7%	1.98 [1.50, 2.60]			P0001
Total (95% CI)		827		789	100.0%	3.17 [1.94, 5.18]		-	
Total events	374		205						
Heterogeneity: Tau2	= 0.19; Cl	ni ² = 12	2.04, df = 4	(P = 0.0)	(2); $I^2 = 6$	7%	01 02 05		10
Test for overall effect	:: Z = 4.6) (P < (0.00001)				Non-COVID-19	COVID-19	10

VAP Rates

ICU Mortality

	COVID	-19	Non-COV	D-19		Odds Ratio	Odds	Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% Cl	M-H, Fixe	d, 95% CI
lue 2020	14	38	7	36	3.2%	2.42 [0.84, 6.95]	-	
Luyt 2020	17	50	18	45	8.8%	0.77 [0.34, 1.78]		
Maes 2021	31	81	30	144	9.4%	2.36 [1.29, 4.30]		
Razazi 2020	37	82	27	82	10.5%	1.67 [0.89, 3.16]	-	P=.01
Rouze 2021	164	568	125	482	68.0%	1.16 [0.88, 1.52]	-	■ -
Total (95% CI)		819		789	100.0%	1.33 [1.07, 1.66]		•
Total events	263		207					
Heterogeneity: Chi ² =	7.80, df	= 4 (P	= 0.10); I ² =	= 49%				
Test for overall effect	z = 2.59	9 (P = (0.010)				Non-COVID-19	COVID-19
							26.3%	32.1%

Szarpak L., TRC Journal of Medicine, 2022;1(1)

26%

45%

Impact of COVID on HAI's in 2020 Compared to 2019: Data from NHSN

	2020 Q1	2020 Q2	2020 Q3	2020 Q4
CLABSI	-11.8%	27.9%	46.4%	47.0%
CAUTI	-21.3%	No Change ¹	12.7%	18.8%
VAE	11.3%	1 33.7%	1 29.0%	14.8%
SSI: Colon surgery	-9.1%	No Change ¹	-6.9%	-8.3%
SSI: Abdominal hysterectomy	-16.0%	No Change ¹	No Change ¹	-13.1%
Laboratory-identified MRSA bacteremia	-7.2%	12.2%	22.5%	133.8%
Laboratory-identified CDI	-17.5%	-10.3%	-8.8%	-5.5%

Weiner-Lastinger LM, Pattabiraman V, Konnor RY, et al. The impact of coronavirus disease 2019 (COVID-19) on healthcare-associated infections in 2020: A summary of data reported to the National Healthcare Safety Network. *Infection Control & Hospital Epidemiology*. 2021:1-14. doi:10.1017/ice.2021.362

PEEP POSITIVE END EXPERIATORY PRESSURE

Strategies for Ventilating the ARDS Lung: Protect From Injury

- \Lambda Oxygen exposure
- \Lambda Pressure (Barotrauma)
- \Lambda Volume (Volutrauma & Biotrauma)
- Shear forces (Reopening & closing of alveoli) (Atelectrauma & Biotrauma)

ATS & SCCM Guidelines for Mechanical Ventilation of ARDS Patients

- ▲ Strong recommendation for:
 - △ Using lower tidal volumes (4-8ml/kg PBW) & lower inspiratory pressures (plateau pressures < 30 cm H2O)</p>
 - \bigtriangleup Severe ARDS prone positioning for > 12 h/d
 - $\bigtriangleup\,$ Against the routine use of HFOV
- Conditional recommendation
 - \triangle Higher PEEP's
 - △ Recruitment maneuvers

Additional evidence needed for ECMO

Amer J of Respir & Crit Care Med, 2017:195(9):1253-1263

Low Tidal Volume

\land 7 RCT's

▲ 1481 patients

Study or Subgroup	Low tidal Events	volume Total	No low tide Events	al volume Total	Weight	Risk Ratio M-H, Random, 95% Cl	Year	Risk Ratio M-H, Random, 95% C		
Open Lung										
Amato 1998	11	29	17	24	9.0%	0.54 [0.31, 0.91]	1998			
Villar 2006	17	50	25	45	10.6%	0.61 [0.38, 0.98]	2006			
Subtotal (95% CI)		79		69	19.6%	0.58 [0.41, 0.82]				
Total events	28		42							
Heterogeneity: Tau ² = ().00; Chi ² = 0.	14, df = 1	(P = 0.71); I ²	= 0%						
Test for overall effect: 2	z = 3.07 (P = 0	0.002)								
No Open Lung										
Wu 1998	12	32	15	24	8.7%	0.60 [0.35, 1.03]	1998			
Brochard 1998	27	58	22	58	11.7%	1.23 [0.80, 1.89]	1998		- Low TV ac	hieved in $< 2/3$ of
Brower 1999	13	26	12	26	8.3%	1.08 [0.62, 1.91]	1999			
East 1999	36	103	32	97	13.0%	1.06 [0.72, 1.56]	1999			
ARDSNet 2000	133	427	174	425	21.4%	0.76 [0.63, 0.91]	2000		ARI	JS patients
Orme 2003	15	60	27	60	9.3%	0.56 [0.33, 0.93]	2003			•
Sun 2009	16	43	14	42	8.0%	1.12 [0.63, 1.99]	2009		- Dellaisi	C at al JANAA 2010.215(0).700 000
Subtotal (95% CI)		749		732	80.4%	0.87 [0.70, 1.08]		-	Bellam	G, et al. JAINA, 2016;315(8):788-800
Total events Heterogeneity: Tau ² = 0	252).04; Chi ² = 11	1.12, df = 6	296 6 (P = 0.08); /	² = 46%						
Test for overall effect: 2	z = 1.26 (P = 0	0.21)								
Total (95% CI)		828		801	100.0%	0.80 [0.66, 0.98]		•		
Total events	280		338							
Heterogeneity: Tau ² = ($0.04; Chi^2 = 14$	4.93, df = 8	B(P = 0.06); I'	= 46%			r		· · · · · ·	
Test for overall effect: 2	2 = 2.18 (P = 0	0.03)		2 70 500			0.	2 0.5 1	2 5	
Test for subgroup differ	ences: Chi ^e =	3.82, df =	1 (P = 0.05);	I* = 73.8%				Favors low tidal volume Favors tr	ditional volume	

Walkey AJ, et al Ann Am Thorac Soc. 2017 Oct;14(Supplement_4):S271-S279.

Improving Delivery of Low Tidal Volume

- \Lambda QI project-4 PDSA cycles
- △ 10 ICU's, 3 Hospitals
- ▲ Initial compliance rate: 40%-60%

Donadee C. BMJ Open Quality, 2022;11:e001343

28

74

64

0.00-

No. at Risk Liberal oxygen

Conservative oxygen

0

102

99

Liberal vs. Conservative O2 therapy in ARDS

- ▲ RCT-13 ICU's, 205 patients
- Intubated/Ventilated with ARDS <</p> 12hrs
- A Randomized:
 - △ Conservative O2: 55 -70 mmhg
 - △ Liberal O2: 90-105mmhg
- ▲ Targets maintained for first 7days or extubation

Mesenteric ischemia in conservative O2 group

Barrot J, et al. N Engl J Med. 2020;382:999-1008

90

63

45

60

69

55

Day

EBR & Meta-analysis: High Peep vs. Low PEEP

- ▲ 8 trials, 2,728 patients
- ▲ Mean PEEP in higher 15.1 (<u>+</u>3.6 cm)
- ▲ Mean PEEP in lower 9.1 (+ 2.7cm)
- ∧ No difference in mortality, barotrauma, new organ failure or VFD's

Walkey AJ, et al. AnnalsATS, 2017;14(Supp 4):s297-s303

How do you know what PEEP to start with post intubation?

- Gattinoni Method
- ARDSnet PEEP/FiO₂ table

Nicole Kupchik

[nijt&xji%| nym%ujwr nxxnts

Titrating PEEP—No difference seen between using Esophageal pressure guided strategy versus the PEEP/FIO2 strategy (Beitler JR, et al. JAMA, 2019;321:646-857

- Multi-center RCT, 120 ICU's, 9 countries, 1010 patients
- ▲ Maneuver: RM with incremental PEEP titration, then PEEP set at 23cm and ↓ by 3cm till 11cm based on compliance.
- 🛕 Results
 - Small # didn't received RM due to hypotension
 - A Higher # with barotrauma in RM group
 - △ PEEP diff was 3-4 cm

Cavalcanti AB, et al. JAMA, 2017;318(14):13351345

PHARLAP: An Open Lung Strategy including Permissive Hypercapnia, Alveolar Recruitment and Low Airway Pressure in ARDS patients

- ▲ A Multi-center RCT in 5 countries/Phase II trial
- Objective: Determine whether maximal lung recruitment strategies reduce VFD versus Low V_t and moderate PEEP
- Enrollment stopped after publication of ART trial

Hodgson CL, et al. Am J Respir Crit Care Med. 2019 Dec 1;200(11):1363-1372

Adjunctive Strategies

💪 APRV

💪 HFOV

💪 ECMO

ECCO₂ (experimental)

△ The strategy of altar protective lung ventilation with extracorporeal CO2 removal for new onset moderate to severe ARDS (SUPERNOVA) trial

 \triangle Protective ventilation with veno-venous lung assist in respiratory failure (REST) trial

APRV: Airway Pressure Release Ventilation vs any Ventilator Mode

- ▲ 7 RCT's, 412 patients
- Mean measured TV in APRV group: 7.47 ml/kg, vs. 7.45 ml/kg
- Improvement in day 3 PaO2/FiO2 ratio
- ∧ No difference in:
 - △ Initial rescue treatments
 - inhaled pulmonary vasodilators
 - prone positioning
 - ECMO
- Barotrauma only reported in three studies (no difference)

Needed a larger sample to prevent false positive in primary outcomes (614 patients)

Lim J, et al. Crit Care Med. 2019 Dec;47(12):1794-1799.

High Frequency Oscillation: EBR & Meta-analysis

5	Six trials with
	1715 patients

∧ No difference in barotrauma rates

	Experin	nental	Con	Control						
Study	Events	Total	Events	Total	Risk	Ratio	Ratio RR		Weight	
Derdak 2002	28	75	38	73		ļ.	0.72	[0.50; 1.03]	18.1%	
Shah 2004	6	15	6	13			0.87	[0.37; 2.04]	7.7%	
Bollen 2005	16	37	8	24			- 1.30	[0.66; 2.55]	10.5%	
Mentzelopoulos 2012	23	61	41	64			0.59	[0.41; 0.85]	17.9%	
Young 2013	166	398	163	397			1.02	[0.86; 1.20]	23.8%	
Ferguson 2013	111	275	78	273		<u></u> _∎ −	1.41	[1.12; 1.79]	22.0%	
Random effects model		861		844	<		0.94	[0.71; 1.25]	100.0%	
Prediction interval				г			_	[0.39; 2.28]		
Heterogeneity: I2 = 75	%, τ ² = 0	.0801, p	< 0.01	0.3	3 0.5	1 2	3			
	-			F	Favours HFOV	Favours con	ventional	ventilation		

In an individual patient meta-analysis, those with ARDS with P/F ratios < 65mmhg may see a benefit.

Meade MO, et al. AJRCCM, 2017;196(6):727-733

Goligher EC, et al. AnnalsATS, 2017;14(suppl 4):s289-s296

EOLIA Trial

- Multicenter, International, RCT
- Method: Compared early VV ECMO or continued conventional ventilator therapy and measure 60-day mortality in patients with severe forms of ARDS
- Cross over to ECMO was possible for conventional group who had refractory hypoxemia
- \Lambda Results:
 - △ Mortality: 35% in ECMO versus 46% in control (p< 0.09)
 - △ Crossover to ECMO avg 6.5 days-28% of control / Mortality 57%

Purchased Shutterstock image

Discoveries with COVID

Candidacy of Patients

- \triangle Previous scoring tools were no longer accurate
- \triangle Younger patients (<50 yrs) single organ dysfunction had best outcomes
- Shorten the interval from intubation to cannulation
 - \bigtriangleup Less than 3 days of MV, P/F ratio <70 mmHg
- \Lambda Adjunctive therapies
 - △ Monoclonal antibodies, cytoreductive techniques
- \Lambda Early Extubation
 - \bigtriangleup Allows for Physical Therapy, Ambulation, decreases resources, Nutrition

PIPES & PUMP

Measures to Improve Oxygen Delivery

Measures to Improve O₂ Delivery

- \Lambda Fluid Management
 - $\bigtriangleup\,$ Balanced fluids vs. Saline
 - \triangle Dry vs. Wet

Balanced Fluids vs .9 % Normal Saline

With a high probability, the average effect of using balance fluids is to reduce mortality

Surviving Sepsis Campaign: International Guidelines for the Management of Sepsis and Septic Shock 2021. Evans Hammond NE, et al. Evidence. 2022;1(2):EVIDoa2100010.,

HEMODYNAMIC MANAGEMENT

Fluid Management

Recommendations

- For adults with sepsis or septic shock, we **recommend** using crystalloids as first-line fluid for resuscitation.
 Strong recommendation, moderate quality of evidence.
- 33. For adults with sepsis or septic shock, we **suggest** using balanced crystalloids instead of normal saline for resuscitation.

Weak recommendation, low quality of evidence.

34. For adults with sepsis or septic shock, we **suggest** using albumin in patients who received large volumes of crystalloids over using crystalloids alone.

Weak recommendation, moderate quality of evidence.

- 35. For adults with sepsis or septic shock, we **recommend against** using starches for resuscitation. Strong recommendation, high quality of evidence.
- For adults with sepsis and septic shock, we suggest against using gelatin for resuscitation.
 Weak recommendation, moderate quality.

Conservative/ Deresuscitation vs. Liberal Fluid For ARDS **Following Critical Phase**

- 11 RCT's ٠
- 2051 patients ٠
- **Results:** •
 - No difference in mortality •
 - ↑ VFD 1.82 days •
 - \downarrow LOS 1.9 days •

Silversides JA, et al. Intensive Care Med, 2017;43:155-170

	conservative	1414	LINCIUL HU		NI SK	in a construction		
Study or Subgroup	Events	Total	Events To	tal Weight	M-H, Rand	lom, 95	% CI	M-H, Random, 95% CI
ARDS								
Huetal 2014	4	15	3	14 0.7%	1 74	0 34 4	601 —	
Martin at al. 2002	7	20	0	20 2.0%	0.78	0 26 1	.00)	,
Martin et al. 2002	1	20	,	20 2.0%	0.70	(0.30, 1	.00]	-
Martin et al. 2005	5	19	5	18 0.6%	0.95	0.22, 4	.10]	
Wang et al. 2014	28	50	30	50 10.8%	0.93	[0.67, 1	.30]	
Wiedemann et al. 2006	128	503	141 4	97 28.8%	0.90	[0.73, 1	.10]	
Subtotal (95% CI)		607		99 43.0%	0.91	[0.77, 1	.07]	•
Total events	170		186					
Heterogeneity: $Tau^2 = 0.0$	$00 \cdot Chi^2 = 0.42$	df = 4	(P = 0.98)	$^{2} = 0\%$				
Test for overall effect: 7 -	1 16 /0 - 0 30)	(1 - 0.50),	- 070				Mortality
rest for overall effect. Z =	1.10 (P = 0.23))						wortdrug
	Conserv	ative fl	uid	Lib	eral fluid			Mean Difference
Study or Subgroup	Mean [Days]	SD [Da	ys] Total	Mean [Days] SD [Days	Total	Weight	IV, Random, 95% CI [Days]
Chen and Kollef. 2015	5.5		9.4 41	7.4	4 12.9	41	6.5%	
Zhang et al. 2015	9	1	7.9 168	10.3	3 18.7	182	10.3%	
Hjortrup et al. 2016	21.4		9.7 75	19.3	5 11.1	76	13.3%	
Martin et al. 2005 Wiedemann et al. 2006	10.3	,	8 20	12	5 2	5 20	6.4%	
Richard et al. 2015	14.0	1	1.Z 503 9.7 20	12	7 16.3	497	2 1% -	
Renakatti et al. 2013	15.8	1	0.8 54	12	1 0.	47	0.8%	
bellakatti et al. 2014	15.0	1	0.0 54	12.		/	5.0%	
Total (95% CI)			891			893	100.0%	•
Heterogeneity: $Tau^2 = 0$.	33; $Chi^2 = 6.63$	df = 6	(P = 0.36); I	² = 9%				10 5 0 -5 -10
Test for overall effect. 2	= 2.70 (F = 0.00	, (, , , , , , , , , , , , , , , , , ,					Favours	s conservative
Fig. 4 Forest plot for outco	ome of ventilato	r-free da	ays					
·	c						D://	
Study or Subgroup Mean	Conservative flui	d] Total	Lib Mean [Davs	SD [Davs] T	otal Weight	Mea IV. Rand	n Difference om. 95% CI [Davs]	Mean Difference
Benakatti et al. 2014	7.1 5.	5 54	10.3	6.5	47 15.5%		3.20 [-5.57, -0.83]	
Hjortrup et al. 2016	6.7 6.	1 75		5 5.3	76 17.5%		0.70 [-1.12, 2.52]	i -
Hu et al. 2014	12.5 3.	5 15	15.	2.5	14 16.1%	-	3.00 [-5.20, -0.80]	
Mitchell et al. 1992	13.5 10.	7 52	10	3 10.7	49 9.8%	-	4.50 [-8.68, -0.32]	
Richard et al. 2015	18.7 17.	1 30	1	14.8	30 3.9%		1.70 [-6.39, 9.79]	
Wang et al. 2014 Zhang et al. 2015	12.1 3.	Z 50	15.	4.6	50 18.5%	-	5.70 [-5.25, -2.15]	
Zhang et al. 2015	9	6 168	8.0	8.2	182 18.7%		0.20 [-1.30, 1.70]	
Total (95% CI)	1917 - 1917 - 1918 - 1918	444			448 100.0%	-1	.88 [-3.64, -0.12]	◆
Heterogeneity: Tau ² = 3.74;	Chi ² = 24.47, df =	6 (P = 0.	0004); $I^2 = 75$	6				-10 -5 0 5 10
Test for overall effect: Z = 2.	09 (P = 0.04)							Favours conservation
Fig. 5 Forest plot for ICU	length of stay, co	onserva	tive or deres	uscitative flui	d strategy ve	ersus sta	ndard care or lib	eral fluid strate

Rick Ratio

Rick Ratio

Concervative fluid Liberal fluid

https://www.researchgate.net/figure/Four-phases-of-hemodynamic-treatment-in-relation-to-cumulative-fluid-balance_fig1_287977953

Timing & Amount of Fluid Administration is Key

This Photo by Unknown Author is licensed under CC BY-NC

- Start as early as possible the administration of volume if warranted-more conservative for patients not in shock
- Control the efficacy of volume expansion with predefined goal-oriented therapy
- More fluid early if needed, less fluid later
- Consider deresuscation if warranted after hemodynamically stable

PARALYSIS

Neuromuscular Blockade in Early ARDS

- Multicenter, double blind trial
- 340 patients with ARDS within 48hrs of admitted to ICU
- ARDS defined as P/F ratio of < 150 > PEEP 5cm & Vt of 6-8 ml/kg PBW
- Randomized to receive 48hrs of cisatracurium or placebo
- Study did not use train of 4

Results:

- After risk adjustment NMB group showed improved mortality at 90 days (31.6% vs. 40.7%)
- Also significant at 28 days
- \triangle \uparrow time off vent
- No difference in muscle weakness

Papazian L, et al. N Engl J Med. 2010;363(12):1107-16

ROSE Trial

- 1006 moderate to severe ARDS patients
- A Randomized to 48hrs Cisatracurium/deep sedation or usual care
- Vent strategies similar in both group (use of higher PEEP)
- A Trial stopped for futility at 2nd analysis
- \land Results:
 - \triangle 90-day follow-up
 - △ Mortality: 42.5% vs. 42.8% (0.3%, 95% CI -6.4 to 5, *P*=0.93)
 - \triangle During hospital stay intervention group had more;
 - Adverse cardiovascular events
 - Less active

Moss M, et al. Petal Network. NEJM, 2019;380(21):1997-2008

Rapid Practice Guideline: NMBA in ARDS Patients

- △ 20 international experts/12 countries
- A Overall certainty in the evidence was low
- ▲ 1 Recommendation:
 - Against routine use of NMBA infusions before optimizing mechanical ventilation & assessing ARDS severity
- ▲ 2 suggestions:
 - △ If NMBA required to facilitate LPV, suggest intermittent doses with judicious deep sedation over NMBA infusion & deep sedation
 - △ If clinician determines continued need for NMBA and deep sedation, suggest continuous for 48hrs over intermittent

POSITION

ATS & SCCM Guidelines for Mechanical Ventilation of ARDS Patients

- ▲ Strong recommendation for:
 - △ Using lower tidal volumes (4-8ml/kg PBW) & lower inspiratory pressures (plateau pressures < 30 cm H2O
 - △ Severe ARDS prone positioning for > 12 h/d
 - $\bigtriangleup\,$ Against the routine use of HFOV
- Conditional recommendation
 - \triangle Higher PEEP's
 - △ Recruitment maneuvers

<u>This Photo</u> by Unknown Author is licensed under <u>CC BY</u>

Prone Positioning Incidence

Prone positioning (PP) was only used in 16.3% of patients with severe ARDS in the LUNG SAFE study

Bellaini G, et al. JAMA, 2016;315(8):788-800

European Prevalence Study (APRONET): Use of PP in mild 5.9%, moderate 10.3%, severe 32.9% ARDS

Guerin C, et al. Intensive Care Med, 2018;44(1):22-37

Italy and Netherlands—60% of Mechanical Ventilated ARDS COVID 19 patient were proned, 50% in the US

> Stilma W, et al. *J Clin Med*. 2021;10(20):4783. Langer T, et al. *Crit Care* 2021; **25:**128 Mathews KS, et al. Crit Care Med. 2021;49(7):1026-1037.

Proning Severe ARDS Patients

Used with Permission Advancing Nursing LLC Copyright © 2017 AACN and Advancing Nursing LLC

In a randomized, controlled trial of 466 patients with severe ARDS, survival was significantly higher at 28 and 90 days in the prone position group

NNT=6

Guerin C, et al. N Engl J Med. 2013368(23):2159-2168.

Prone Meta-Analysis

∧ 8 RCT's

2017;14(4):s280-s288

A 2129 total adult patients

Subgroup analyses: Lower mortality with > 12 hours

Prone Meta-Analysis: Sub-Groups

▲ Moderate to Severe ARDS vs. Mild ARDS

	Pro	ne	Supi	ne		Risk Ratio			Risk Ra	tio		
Study or Subgroup	Events	Total	Events	Total	Weight	IV, Random, 95% CI		IV, R	andom,	95% CI		
Moderate to Severe A	RDS											
Mancebo et al. 2006	38	76	37	60	17.0%	0.81 [0.60, 1.10]						
Chan et al. 2007	4	11	4	11	3.2%	1.00 [0.33, 3.02]			-+-		9	
Fernandez et al. 2008	8	21	10	19	6.9%	0.72 [0.36, 1.45]			•	-		
Taccone et al. 2009	52	168	57	174	16.6%	0.94 [0.69, 1.29]			-	<u> </u>		
Guerin et al. 2013	38	237	75	229	15.3%	0.49 [0.35, 0.69]			-			
Subtotal (95% CI)		513		493	59.1%	0.74 [0.56, 0.99]		(•)		
Total events	140		183									
Heterogeneity: Tau ² =	0.05: Chi ²	= 8.51.	df = 4 (P	= 0.07);	$I^2 = 53\%$	6						
Test for overall effect: 2	Z = 2.06 (P = 0.04	4)									
			,									
All ARDS												
Gattinoni et al. 2001	70	152	67	152	19.1%	1.04 [0.82, 1.34]			-			
Guerin et al. 2004	134	413	119	378	20.9%	1.03 [0.84, 1.26]			-			
Voggenreiter et al. 200	5 1	21	3	19	0.9%	0.30 [0.03, 2.66]	+					
Subtotal (95% CI)		586		549	40.9%	1.03 [0.88, 1.20]			•			
Total events	205		189									
Heterogeneity: Tau ² =	0.00: Chi ²	= 1.24	df = 2 (P)	= 0.54);	$I^2 = 0\%$							
Test for overall effect:	Z = 0.36 (P = 0.72	2)									
	,		,									
Total (95% CI)		1099		1042	100.0%	0.84 [0.68, 1.04]			•			
Total events	345		372									
Heterogeneity: Tau ² =	0.04; Chi ²	= 16.9	4, $df = 7 (F)$	e = 0.02	(); $I^2 = 59$	%	_					
Test for overall effect:	Z = 1.60 (I	P = 0.11)				0.1	0.2 0.5	1	2	5	10
Test for subgroup diffe	rences: C	hi ² = 3.9	93, df = 1 (P = 0.0	5), <i>I</i> ² = 7	4.6%		Favours prone		Favour	s supine	

Greater incidence of pressure injuries and ET tube obstruction in prone vs supine.

Munshi L, et al. AnnalATS, 2017;14(4):s280-s288

Prone Positioning in COVID 19 Patients

- Data from study & treatment of outcomes in critical ill patients with COVID
- 🛕 68 hospitals
- A Patients with p/f ratio < 200mmHg initiated prone positioning or not within first 2 days of ICU admission
- \Lambda Results
 - △ 2338 eligible pts: 30% proned
 - \bigtriangleup Lower in-hospital mortality if proned early

Awake Prone Positioning with COVID: Open Label RCT

- A Efficacy of awake proning to prevent intubation or death
- International open label RCT
- COVID 19 hypoxemic respiratory failure defined as: requiring respiratory support with HFNC & P/F ratio of < 315 randomized to awake prone positioning or standard care
 - \triangle Awake prone (567)
 - \triangle Standard care (559)
- A Patient instructed to lie in PP as frequent and as long as can be tolerated each day
- A Pre-defined criteria for intubation was used in both group
- A Outcomes:
 - △ Tx failure define as intubation or dying within 28 days of enrolment
 - △ Secondary outcome: intubation, mortality, use of non-invasive vent, time to intubation, time to death, Hospital LOS

<u>This Photo</u> by Unknown Author is licensed under <u>CC BY-NC</u>

6 Countries: Mexico, US, Spain, Canada, France & Ireland

Ehrmann S, et al. Lancet Respir Med. 2021;9(12):1387-1395.

Awake Prone Positioning with COVID: Open Label RCT

Number of patients

Ehrmann S, et al. Lancet Respir Med. 2021;9(12):1387-1395.

Sample ARDS Treatment Algorithm

Papazian, L., Formal guidelines: management of acute respiratory distress syndrome. Ann. Intensive Care 9, 69 (2019) Springer Open Journal

PROTEIN (NURTITION)

SSCM Nutritional Guidelines (2016)

- Initiate enteral nutrition (EN) within 24–48 hours following the onset of critical illness and admission to the ICU and increase to goals over the first week of ICU stay. For ARDS-either trophic or full EN
- Take steps as needed to reduce risk of aspiration or improve tolerance to gastric feeding
- Do not use gastric residual volumes as part of routine care to monitor ICU patients on EN
- Start parenteral nutrition early when EN is not feasible or sufficient in high-risk or poorly nourished patients
- No specific recommendation for ARDS/Severe ALI=EN formula with anti-inflammatory lipid

Recommended for COVID 19 Requiring ICU

Early EN is always
preferred –exceptions
escalating vasopressors,
high positive respiratory
support, GI symptoms
or bowel ischemia

Feeding via nasogastric tube is in easy to execute method that requires minimal expertise

A prokinetic agent can be used as a second step in case of GI intolerance

Postpyloric delivery route is only used in cases when above strategies have failed

Continuous rather than bolus is recommended

Initiate at low dose (tropic) slowly advancing to full dose over first week

Journal of Parenteral and Enteral Nutrition, Volume: 44, Issue: 8, Pages: 1439-1446, First published: 16 August 2020, DOI: (10.1002/jpen.1996)

PROTOCOL/ BUNDLE DRIVEN CARE

Assess & Manage Pain, Awake and Breathing Coordination:

↓ Duration of mechanical ventilation
↓ Duration of coma
↓ Mortality

Manage pain first, Choose light sedation & avoid benzos

↓ Duration of mechanical ventilation
 ↓ Mortality
 ↓ Delirium

Delirium monitoring & management

↑ Delirium detection Early Mobility & Environment

- **↓**Duration of delirium
- **↓**Disability
- **↓**ICU Length of Stay

Family Engagement

Dexamethasone in ARDS: RCT

- Multicenter randomized RCT
- \Lambda 17 ICU's in Spain/277 pts
- Enrolled mod-severe ARDS patients <200 P/F ratio</p>
- \Lambda Treatment group: 139 patient
 - \bigtriangleup 20mg IV x1 daily from day 1 to day 5
 - △ 10mg IV x1 daily from day 6 to day 10
- ▲ Control group: 138
 - \triangle Usual care
- Underpowered by 37pts

	Dexamethasone group (n=139)	Control group (n=138)	Between-group difference (95% CI)	p value
Ventilator-free days at 28 days	12.3 (9.9)	7.5 (9.0)	4·8 (2·57 to 7·03)	<0.0001
All-cause mortality at day 60	29 (21%)	50 (36%)	-15·3% (-25·9 to -4·9)	0.0047
ICU mortality	26 (19%)	43 (31%)	-12·5% (-22·4 to -2·3)	0.0166
Hospital mortality	33 (24%)	50 (36%)	-12.5% (-22.9 to -1.7)	0.0235
Actual duration of mechanical ventilation in ICU survivors, days	14-2 (13-2)	19.5 (13.2)	-5·3 (-8·4 to -2·2)	0.0009
Actual duration of mechanical ventilation in survivors at day 60, days	14.3 (13.3)	20.2 (14.0)	-5·9 (-9·1 to -2·7)	0.0004
Adverse events and complications*				
Hyperglycaemia in ICU	105 (76%)	97 (70%)	5·2% (-5·2 to 15·6)	0.33
New infections in ICU	33 (24%)	35 (25%)	1.6% (-8.5 to 11.7)	0.75
Barotrauma	14 (10%)	10 (7%)	2.8% (-4.0 to 9.8)	0.41

Data are n (%) or mean (SD). ICU=intensive care unit. *Data included the period from randomisation to day 10 (for hyperglycaemia) and from randomisation to ICU discharge (for new infections and barotrauma).

Table 2: Outcomes, adverse events, and complications

Post ICU Discharge & Long Term: How Do We Help?

Long Term Follow Up: Managing Medical Complexity

- Cognitive impairment 83.5% at d/c--51.3% at 1yr (ARDS)
- Quality of life scores & exercise intolerance remain lower than average 5 yrs. out. (ARDS)
- Peripheral nerve injuries from positioning, joint contracture from immobility, and oral or laryngeal injuries are common. (COVID)
- Critical illness erodes baseline health and increases medical complexity
- Specialized inpatient and longitudinal interprofessional and multidisciplinary team-based care

Formal Patient/Family Center Follow-Up After ARDS/COVID/Critical Illness

Herridge MS, Am J Respir Crit Care Med, 2017;196(11):1380-1384 Peach BC. Rehabilitation Nursing 2-22;47(2):72-81 Parotto M, *Lancet Respir Med*. 2021;9(8):812-814.

Preventing Progression

> Precision Treatments based on Phenotypes

New Pharmacological agents

Models for long term follow up

?

Purchased Shutterstock image

WHAT YOU ARE LEARNING TODAY, IS GOING TO SAVE A LIFE TOMORROW

kvollman@comcast.net